A Simple Method to Determine the Number of True
Different Quadratic and Cubic Permutation
Polynomial Based Interleavers for Turbo Codes

Lucian Trifina, Daniela Tarniceriu

Abstract—Interleavers are important blocks of the turbo codes, their types and dimensions having a
significant influence on the performances of the mentioned codes. If appropriately chosen, the
permutation polynomial (PP) based interleavers lead to remarkable performances of these codes. The
most used interleavers from this category are quadratic permutation polynomials (QPPs) and cubic
permutation polynomials (CPPs). Based on the necessary and sufficient conditions for the coefficients
of the second and third degree polynomials to be QPP and CPP, respectively and on the Chinese
remainder theorem, in this paper we determine the number of true different QPPs that cannot be
reduced to linear permutation polynomials (LPPs), and the number of true different CPPs that cannot
be reduced to QPPs or LPPs. This is of particular interest when we need to find QPP or CPP based
interleavers for turbo codes.
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1. Introduction

The interleaver is a critical component of a turbo code. The algebraic interleavers
are preferred because of several advantages: analytical design, outstanding
performances and simple, practical implementation with high-speed, low-power
consumption and little memory requirements [1].

From the category of permutation polynomial (PP) based interleavers, the
quadratic permutation polynomial (QPPs) based ones [1-15] have got the most
attention. They are used in the Long Term Evolution (LTE) standard [16]. Although
QPP interleavers have remarkable performances, for some lengths, the cubic
permutation polynomial (CPP) interleavers [17-19] bring improvements over QPPs in
terms of bit error rate (BER) and frame error rate (FER) for Additive White Gaussian
Noise (AWGN) and for independent fading Rayleigh channels, as shown in [17].

This paper proposes a way to determine the number of true different QPPs that
cannot be reduced to linear permutation polynomials (LPPs) and the number of true
different CPPs that cannot be reduced to QPPs or LPPs. The used method is based on
the Chinese remainder theorem and is very simple to be applied. The number of true
QPPs was also found in [8] in other way. The number of PPs with degree at most six
was addressed in [20], but this approach did not consider the equivalence conditions
and nor the number of polynomials, separately, for each polynomial degree.

The paper structure is as follows. QPPs and CPPs over integer rings are reviewed
in Section 2. In Section 3, the used method based on the Chinese remainder theorem is
presented. Section 4 provides the formulas for the number of true different QPP based
interleavers, while Section 5 provides the formulas for the number of true different
CPP based interleavers. Section 6 concludes the paper.

2. QPP and CPP Based Interleavers over Integer Rings
A PP based interleaver of degree n is of the form:

7(X) =0y +0X+0X* +...+,X" (modN), (1)
where N is the interleaver length and the coefficients g, , k =1,n are chosen so that
z(x) from (1), with x=0,1,...,N -1, is a permutation of the set Z, ={0,1,...,N —1}.
Without loss of generality of the problem dealt with in the paper, we consider g, =0.

For n=2 and n=3in (1), a QPP and a CPP results, respectively.

The conditions for the coefficients q,,q,, so that 7(x) in (1) with n=2 is a
permutation polynomial, are given in [1] and the conditions for the coefficients
q,.0,,0;, so that z(x) with n=3 is a permutation polynomial, are given in [18-19].

They are summarized in Table 1 for QPPs and in Table 2 for CPPs, respectively,
depending on the factors of decomposition in prime factors of the interleaver length
N, as:



N=]]p"", 2)
peP,
pIN
where P is the set of prime numbers, the notation p|N means that p divides N and

Ny, =1 for a finite number of prime numbers.

Table 1: Conditions for the coefficients q,,q, so that 7(x) in (1) with n=2 is a
permutation polynomial

la) | p=2|ng,=1](q+0,)=0(mod2)

1.b) Ny,>1 | g #0(mod2) and g, =0(mod2)

2. | p>2|ny, 21| g #0(modp), g,=0(modp)

Table 2: Conditions for the coefficients ¢,,q,,q, so that z(x) in (1) with n=3 is a
permutation polynomial

la)| p=2 Nyo=1 | (g +0,+0,)#0(mod2)
1.b) Ny,>1 | g #0,0,=0,0, =0(mod2)
2.a)| p=3 Nvs=11 (9 +0)#0,0, =0(mod3)
2.b) Nys;>1 1| ¢ #0,(q+0,)#0,q, =0(mod3)
3.2) | 3|(p-1) | ny,=1]|q=00,=0,0,=0(modp)
3.b) Ny,>11]0q=0,0,=00,=0(modp)
4a) | 3)(p-1) | Ny, =1 | 0; =3q,0,(mod p) if g, #0(mod p) and
p>3 q, #0(mod p), g, = 0(mod p) if g, =0(mod p)
4.b) Ny,>11]0¢#0,0,=0,0,=0(mod p)

3. A Simple Method for Determining the Number of True
Different Permutation Polynomial Based Interleavers Using
the Chinese Remainder Theorem

In the following, we recall the result of the Chinese remainder theorem.
Theorem 1. Suppose n,,---,n, are positive integers that are pairwise coprime.

Then, for any given sequence of integers a,,---,a,, there is an integer x solving the
following system of simultaneous congruences:



............... (3)
x =a, (modn,)
Furthermore, all solutions x of this system are congruent modulo the product
N=n .- n, . Hence
x=y(modn;),1<i<Kk <  x=y(modN) 4)
Theorem 1 ensures that for two different sequences a,,---,a,, two distinct

modulo N solutions exist.
The method that we present in this paper uses the result of the following
theorem from [2]:

Theorem 2 ([2]). For any N :H p?”"’l , such that seN", Mg, 21 Vj=1,s,
i=1
z(x) is amodulo N PP, iff 7(x) is also a PP modulo p?“’” ,Vi=Ls.
Assume that 7 (x) is a PP. Let there be:
G j :qi(mOd p?N'pj)a ijla_sa Vi=1n. (5)

Since the numbers p?”"”' , j=Ls, are relatively prime to each other, from the

Chinese remainder theorem we have that for Vi=1n, if we know the values

a, eZp j=1,5, then there is a single number q eZ,, that is precisely the

™N.pj
i

coefficient g, for the assumed PP.
Since (Z% -XiJ(mod p"” ) =(Zqi,j -xiJ(mod p,"” ), from the Theorem 2
i=1 i=1

above, it results that if the coefficients ¢, ; € Z ,, , o 1=Ln, Vj=Ls, are chosen so that
: o

the polynomials [Z G ; -xij(mod p"” ), Vj=1s, are modulo p;"" PPs, Vj=1s, then
i=l

the coefficients g e€Z,, i=1,n determine a modulo N PP. Therefore, we can

determine the number of modulo N PPs in the following way:

S
a) We decompose the interleaver length in prime factors N = H p?“‘” , such that
j=1

seN’, Nyo, 21, Vi=Ls.

b) For any j=1,s, we find all the coefficients q; €Z i=1,n, so that the
’ p

N,pj
i

polynomial (Z q -Xi](mod p?N"”') is a modulo p?“’“l PP. This can be done easily if
i=1

we know the conditions the coefficients of the PP must met depending on p; and



n as is the case for QPPs and CPPs. We calculate the number of such modulo

N.p;
p?“"”' PPs from the coefficient conditions.

c) To determine the true number of different PPs, we must take into account the
equivalence conditions imposed for PPs of degree n imposed and considering g, #0.
For QPPs and CPPs, these equivalence conditions are given in [8-9] and [17],
respectively. The condition g, =0 is met only when ¢, ;=0, Vj=1s. For the

remaining number of coefficients q,; €Z |, 9 j= s, we compute the total number
: o

of combinations that can lead to a modulo N PP. It will be the product of numbers of
all coefficient combinations for j=15.

d) In the next section, we apply the method described above for the case of QPPs
and CPPs and determine the true number of different QPPs and CPPs, respectively,
depending on the types of factors that appear in prime factor decomposition of N . As
in [8], we denote by ®(N) the Euler function, which is the number of numbers

relatively prime with N, smaller than N . It is given by the following equation:

@(N):N-H(l—lpJ (6)

peP,
pIN

4. Determining the Number of True Different Quadratic
Permutation Polynomial Based Interleavers

We mention that the equivalence condition of QPPs [8] requires that g, <N/2,
when 2|N.
It is useful to determine the values q;;, i=12, j=1s, for the Quadratic Null

Polynomial (QNP). From [8], it is known that the only QNP is obtained for
0,9, = N/2, when2 | N . Therefore, in this case the same QPP interleaver results, if the

QPP coefficients change from (q,,q,) to ((g,+N/2)(modN),(q,+N/2)(modN)).

Thus, if N:Z””l-Hp?N“”, with n,>1, p;>2 and ng, >1, j=2,s, then

N.p; —
i=2

N/2=2""T] p?”"” and we have:

i=2
- Forng,=1:q,=1and q;=0, Vi =1,2, Vj=2,s. Therefore, in this case the
same QPP interleaver results, if the values q,;, with i =1,2 and j=2,s, remain the
same and the values q,,, i =1,2, change to (g, +1)(mod2), i=12.
- For ng,>1: q,=0 and q;=0, Vi =1,2, Vj=2,s. In this case, all the

coefficients q; ;, i=1,2, j=1,s, remain the same for equivalent QPPs.

5



In the case of QPPs, we have three types of factors as shown in Table 1. These
are considered in the following and for each type of prime factor, the number of QPPs
is determined.

Case l.a). If p=2 and ng,=1, the coefficients q,eZ,={0,1}, i= 1,2. The

condition (g, +0,,)#0(mod2) is met for g, =0,q,, =1 or g, =1,q,, =0. Since the

two sets of coefficients lead to equivalent QPPs, from the two combinations only one
must be kept, for example q;, =1,q,, =0, combined with other prime factors.

Case 1.b). If p=2 and ny, >1, the coefficients ¢, €Z, i =1,2. The condition

g, #0(mod2) is met for q)(znw): 2™ coefficients. The condition @,, = 0(mod2)

N2

. -1 . . . .
is met for =2™2" coefficients, from which one is zero. In this case, from the

equivalence conditions of QPPs, it results that all values greater or equal to
2”N,2 Ny »—1 ny 21

= 2™2"" have to be removed, i.e. =2"™2" values, leading to

values for g, ;.

_ 2nN12—2

i=1,2. The condition

N,p 2

Case 2). If p>2 and n >1, the coefficients g eZp
q; #0(modp) is met for CD(p"”"“) =p™.(p-1) coefficients.  The

Ny p

p

N

condition g, =0(mod p) is met for = p™*" coefficients, from which one is zero.

We apply the method described in Section 3 and distinguish three situations for the

decomposition in prime factors of N, namely:

a) 2/N , that is N :H p?“’” , with p; >2 and Nyp, 21 Then, from Case 2) above,
i=1
the number of possible combinations for the coefficient ¢, results equal to

H pr_‘“'pf1 ( P, —1) and the number of coefficients g, is equal to H p?”"” . The value
j=1

J
j=1
q, =0 results only when g,;=0,V] =1,s, that is for only one combination of the

coefficients q, ;, j = 1,s, which has to be removed. The number of QPPs will be:

Cocer = L1(55 (o, D) T @
i j=1

=1
Equation (7) is equivalent to Theorem 6, case a) from [8].
From (7) we see that the number of QPPs is equal to 0, when the interleaver length
is a product of prime numbers greater than 2, each of them to the power 1.

b) 4|N, that is N=2"*-[]p;*", with n,,>1, p,>2 and n
j=2
From the cases 1.b) and 2) above, the number of possible combinations for the

np, 21 J=2,8.



coefficient g, results equal to 2™ H pnN . ( J —1) and the number of coefficients

j=2

S
g,, equal to 2™ H p?“’”fl . Since from the equivalence condition of QPPs we must
S
have g, < N/2, a number of M H pthT =2 H p?”‘”"fl coefficients remain,

from which the value g, =0 has to be removed, finaly remaining 2™ H p?“"”‘*l -1

values for true different QPPs. Then, the number of QPPs will be:

Ch.opes = M li[( p?N’pjil ( P; _1)) [ oM H pnN e —1] (8)
=

Equation (8) is equivalent to Theorem 6, case b) from [8].

From (8), we see that the number of QPPs is equal to 0 when the interleaver length
is a multiple of 4 of a product of prime numbers greater than 2, each of them to the
power 1.

c) 2|N and 4/N,that is N=2-H p?“"’i,with p;,>2 and Nyp, 21, j=2,s. From

j=2
the cases 1.a) and 2) above the number of possible combinations for the coefficient g,

results equal to Hp?”’”"_l-(pj—l) and the number of coefficients g, equal to
j=2

S
H pnN i . We mention that in this case all the H p?“""'fl coefficients ¢, are equal

=2

modulo N to [] p?““’j " different coefficients g, < N/2. Therefore, we have to only

=2

remove the value g, =0, finally leading to H p?“""'fl —1 values for the coefficient g,
j=2

of true different QPPs. Then the number of QPPs will be:

CN,QPPS = li[( p?N’pj B ( P; _1))[li[ p?N’pj B _IJ )
=2 =2

Equation (9) is equivalent to Theorem 6, case c¢) from [8].

From (9) we see that the number of QPPs is equal to 0 when the interleaver length
is a multiple of 2 of a product of prime numbers greater than 2, each of them to the
power 1.

From the cases a), b) and ¢), we conclude that the number of QPPs is 0 when the
interleaver length is

N =2"=.T]p,,with n,

=2
Such lengths have to be avoided in designing QPP based interleavers.

=0,2, pj>27 J:ﬁ (10)



5. Determining the Number of True Different Cubic
Permutation Polynomial Based Interleavers

We note that from the equivalence conditions for CPPs [17], we must have:
- 0,<N/2 and g, <N/2, when 2|N and 3/(N .

- g,<N/3,when 3|N and 2/N.

- g,<N/2 and g, <N/6, when 6|N.

The 10 Cubic Null Polynomials (CNPs) are given in [17]. The values q,;,
i=12,3, j=1s, for these CNPs are given below, where the order of CNPs is that
from [17] and the only QNP is left the last.

- If 2|N and 3/(N , thatis N :Z"N’Z-H p?““’i , with ng, >1, p;>2 and ng , >1,
j=2

N,p; =

j=2,s, there are two CNPs to which the only QNP is added. For these three NPs of

degree at most equal to 3, the values of the coefficients ¢ ;, i=1,2,3, j=1,s, are, in

terms of n,:
1) when ny, =1, we have: L.I) q,=q,,=1, q,, =0 and ¢ =0, Vi=13,
vj=2,s; LI) q,,=q, =1, q,=0 and g, =0, Vi=13, Vvj=2,s; LIII)
q,=9,=1,0,=0and q; =0, Vi=13, Vj=2,s.
2) when ny,>1 for all the three NPs we have: 2.I), 2.II), 2.III)

0, =0,, =0, =0, and Qi =0, Vi:l,_3, VjZZ,S.

- If 3N and 2/(N,that is N :3"“-1—[ p?“"" , with ng,>1, p;>2 and ng , >1,
=2

N.p; —

j=2,s, there are two CNPs. The values of the coefficients q,,1=123, j =1,s, for
these two CNPs are given in terms of n ;:
1) when n, =1, we have: 1.II) q,, =2;q,, =1 or q, =1;q;, =2, depending

on the product Hp?“‘”", 0,,=0 and q;=0, Vi=13, Vj=2,s; 1.IV)
j=2

0, =10, =2 or g, =2:;q,, =1, depending on the product p?”""' , 0, =0

j=2
and ¢, ;=0, Vi =1,3, Vj=2,s.
2) when ng,>1, for both CNPs, we have: 2.11I), 2.1V) q,,=0q,,=0,, =0,

and g ; =0, Vi=13, Vj=2,s.

- If 6|N, that is N=2"2.3"".T] p?“””' , with ng,>1, n;;>1, p;>2 and
j=3
>1, j=3,s, there are 10 CNPs, to which the only QNP is added. The values of

Ny .p,

8



the coefficients g, ;, i=1,2,3, j=1s, for these 11 NPs of degree at most equal to 3
are given in terms of n, and n;:
1) when ng,=1 and ng,=1, we have: 1.I) q,=0q,,=1, g,,=0, and
q,=0, Vi=13, Vj=2,s; LII) q,,=q,,=1, q,=0, and g, =0, Vi=13,
Vj=2,s; L.I) q, =0q,, =q,, =0, q,,=2:;0,, =1 or g, =1;q,, =2, depending

on the product Hp?”“", q,,=0, and ¢ =0, Vi=13, vj=3,5; LIV)
i=3

q,=0,,=0,,=0, q,=L0,,=2 or g, =2;0,, =1, depending on the product

H p?N’pj > U =0, and g ; =0, Vi=13, Vj :?’5_5; 1.V) 0, =05, =1, 0, =0,
j=3

0,,=2;05, =1 or g, =1;0;, =2, depending on the product H p?“"’" , 0,,=0,
=3

and ¢ ;=0, Vi=13, Vj=3,s; 1.VI) q,,=0, q,, =1, g,,=1; q,, =2;q,, =1

or q,,=10,, =2, depending on the product []p;"", d,,=0, and g, =0,

j=3

vi=13, Vvj=3s; 1VI) q,=1, q,=1, q,=0; q,=20,=1 or

0y, =1:0;, =2, depending on the product [] p?”’p" , 0,,=0, and @ ;=0,
i=3

Vi=13, Vj=3,s; 1.VII) q,=1, d,=1, d;,=0; q,=2:0q;,=1 or

=2, depending on the product Hp?“""', q,,=0, and q;=0,

i=3

5 Vj:E; I.IX) ql,lzl, q2,1=O, q},lzl; q1,2=2;q3w2:1 or

q],z = 1;

o]
'y
)

Vi=1,

W

Gy, =1;0;, =2, depending on the product [] p?”’p" , 0,,=0, and @ ;=0,
i=3

Vi=1L3, Vj=3,5; 1.X) q,=0, d,=1, q,=1; q,=20q,=1 or

0y, =1:0;, =2, depending on the product [] p?“"’" , 0,,=0, and g ;=0,

=3

Vi=13, vj=3,5;1.XI) q,=0,,=1,q,=0,and q; =0, Vi=13, Vj=2,s.
2) when ng,=1 and ng,>1, we have: 2.I) q,=q;, =1, q,,=0, and
q,=0, Vi=13, Vj=2,5; 2.I) q,,=q,, =1, q,=0, and g, =0, Vi=13,
Vj=2,s; 2.I1I) and 2.1V) 0,=0,,=0;,=0,and g ;=0, Vi=1,3, Vj=2,s;
2.V) and 2.IX) q,,=q,,=1, 0,,=0, and ¢ ;=0, Vi=13, Vj=2,s; 2.VI)
and 2.X) q,, =0, q,, =1, q,, =1, and q =0, Vi=13, Vj=2,5; 2.VII) and
2.vIl) g, =1, q,,=1, g,=0; and q;=0, Vi=13, Vj=2,5; 2.XI)
0, =0, =1,0,=0,and g, =0, Vi=13, Vj=2,5.

9



3) when ng, >1 and ng =1, we have: 3.I) and 3.1) q,, =q,, =q,, =0, and
q,=0, Vi=13, vj=2,5; 3.11I) - 3.X) q,=0,, =0, =0, q,,=20,, =1 or

0y, =1:0;, =2, depending on the product [] p';“""' , 9,,=0, and q;;=0,
j=3

Vi=13, Vj=3,5;3.XI) q,=0,, =0, =0,and g, =0, Vi=13, Vj=2,s.

4) when ng,>1 and ng;>1, we have: 4I) - 4XI) q,;=0, Vi=13,

vj=1s.
In the case of CPPs, there are four types of prime factors, as shown in Table 2.
They are considered below and we determine the number of CPPs for each type of
prime factor. The prime factor 2 is considered the first one, the prime factor 3 is
considered the second one and the other prime factors are considered with arbitrary
indices j>3.
Case l.a). If p=2 and ng, =1, the coefficients q,€Z,={0,1}, i=12,3. The

condition (ql,1 +0,, + q3,1) #0(mod2) is met for the following coefficient combinations:

Gis> i=12,3: q,=0,9,,=0,95, =1 or q,,=0,0,, =1,0;, =0 or q,, =1,0,, =0,0;, =0 or
q,, =10,, =10, =1. Since the four sets of coefficients lead to equivalent CNPs, only
one must be kept in combination with other types of prime factors.

Case 1.b). If p=2 and ny, >1, the coefficients ¢, €Z, i =1,3. The condition

N2 9

q,, #0(mod2) is met for ®(2””~2)= 2™=" coefficients. The condition @,, =0(mod?2)

NN 2

-1 . . ..
=2"™2" coefficients. From the equivalence conditions

or g, =0(mod2) is met for

of CPPs for 2|N and 3/(N , it results that from the values of @,, and q,, only
2nN‘2—1

=2"27? lead to different permutations.

Case 2.a). If p=3 and n, =1, the coefficients q,, €Z, ={0,1,2}, i=13. The
condition (ql,2 + qﬂ) #0(mod3) is met for the following coefficient combinations: g, ,
i=,3: ¢,=0,0,,=1, or ¢,=0,9,,=2, or q,=10,,=0, or q,=10,,=1, or
q,=2,0,,=0, or q,=2,0,,=2. The condition g,,=0(mod3) is met only for
0,, =0. From the equivalence conditions of CPPs for 2 /( N and 3| N, it results that the

six sets of coefficients q,, i =1,3, lead to only two distinct permutations that can be
considered for q,, =1,4,, =0 or q,, =2,0,, =0 and @,, =0. Because for these two sets
we have q,,=0q,,=0, only g, being different, in combination with other prime
factors we must consider two coefficients for g, and only one for g,,and q,,,

respectively.

10



Case 2.b). If p=3 and ny,>1 the coefficients ¢, eZ i=13. The

N3 2

Ny -1

condition q,, =0(mod3) is met for 3 values. The condition g, # 0(mod3) is met

for d)(3"“’-‘)=2-3”“’3"1 values. The set of wvalues for q, is

{1,2,4,5,7,8,...,3”“-3 —2,3™= —1} , of which 3™ values are equal to 1 modulo 3 and

Ny ;-1

also 3 values are equal to 2 modulo 3. As q,,€Z, the condition

N3 o

(G, +0s,)#0(mod3), for a fixed value of q,, will be fullfiled for
3™ 3MsT = 2.3 coefficients q,,. However, as 3™ is multiple of 3, from the
equivalence conditions of CPPs for 2/N and 3|N, it results that of the 2-3™*"

Ny3—2

coefficients g,, only % 2-3™7=2.3 lead to distinct permutations.

Cases 3.a), 3.b), 4.b). If p>3 and ny >1 when p=3-k+LkeN and n  >1

when p=3-k+2,keN, the coefficients ¢ ;e Zp i=1,3. The condition

N,p 2

q.; #0(mod p) is met for q)(p"”):p"”-“’l-(p—l) coefficients. The condition

n
p " nN.p’1

0,; =0(mod p) or g, ; =0(mod p) is met for =p coefficients, of which one

1S zero.
Case 4.a). If 3] (p-1), p>3 and ny , =1, the coefficients ¢, ; € Z i=1,3. The

condition ¢, ;#0(modp) is met for ®(p)=p-1 coefficients. The condition

p’

0,; =0(mod p) or q,;=0(mod p) is obviously met only for the value zero. When
0s; # 0(mod p) (for ®(p)=p-1 values), the condition q;; =3q,;g;,(mod p) has to
be fulfilled. This congruence equation, for fixed g, ; and g, ;, has only one modulo p
solution in the variable q,; [21]. Therefore, by considering all the p possible values

for g,;, a number of p-(p-1) coefficient combinations q,; €Z, i =1,3, results, that

p b
verifies the condition q; ; =3¢, ;q; ; (mod p).

For this case, it is useful to see how many coefficient combinations result when

n4a

the product of factors is of the type 4.a), that is N =Hpj,
j=1

withp, =3-k+2,keN’, j =1,n,, . The conditions q,; #0(mod p), g,;=0(mod p) and
g ; =0(mod p), have to be considered for each group of n,,, prime factors of type
4.a), with n
corresponding to those n,, prime factors.

=1,n,,. We denote by I, ={12,...,n,} the set of indices

4a,0

We firstly consider the case of groups consisting of only one prime factor, p; . Thus,

if q,; :O(mod pj]), the following conditions must be meet , ; iO(mod pjl) and

0y :O(mod p; ), and if g, # O(mod pj), the condition q;; =30, ; (mod pj),
11



Vjel, , j# j, must be met. The first set of conditions is met for p; —1 coefficients

q, and a single value for ¢, and q,, respectively, which is zero. The second set of

Nga
conditions is met for H( P, - 1) coefficients q,, and the congruence equation has one
B
Nya Nya
solution in the variable q;, for each of the H p, coefficients q,, and the H( p, - 1)

j=L i=L
1#h 1#h
coefficients q,. Therefore, in total, for the groups consisting of one factor p,, for
Nya Nya
which g, =O(mod ph)’ we have (pjl —1)-H P -H(pj —1) combinations of
i=L i=L
I I

coefficients q;, i=1,3.
In the following, we consider the case of groups consisting of two prime factors, p;

and p, Thus, if g,;=0(mod p;), for je{j.],} the conditions g, ;#0(modp;) and
0,,; =0(mod p;) must be met for je{j,j,}, and if g, ;=0(mod p;), the condition
0 =30, ;05 ; (mod pj), Vjel, , j#], andj=#j, must be met. The first set of

conditions is met for (p i —1)-(p W —1) coefficients g, and a single value for g, and q;,

Nyq
respectively, which is zero. The second set of conditions is met for H(pj—l)

.

171

coefficients g,, and the congruence equation has one solution in the variable g, ;, for

Nja

each of the H p, coefficients g, and the y (pj —1) coefficients q,. Thus, in total,
i=t j=1

1. 11
1# ) 1#h

for the groups consisting of two factors, p; and p;, for which g, =O(mod pj),
je{ini,}, we have (pj] —1)-(pjz —1)-ﬁ p; -lAi_a[(pj —1) combinations of coefficients
j=1 j=1

1#5 1#hs
1#1 1#1

Q, i=13.
Let the set I, <, , with 1<n,,<n,, (the notation O derives from the fact

that q,; = O(mod p j), for jel, ). Then, if there are groups of n,,, prime factors of
type 4.a), it means that the following conditions have to be met: ¢, ;tO(mod p j),
0,;=0(mod p;), if q,;=0(modp;), Vjel, , and q;;=3q,,q,;(modp,;), if
Oy; #0(mod p; ), Viel, —I

Nyap "

12



The first set of conditions is met for H (p = 1) coefficients g, and one value for g,
J-E|”4a.0

and q,, respectively, which is zero. The second set of conditions is met for

H (p J. —1) coefficients @,, and the congruence equation has one solution in the
j€|n4a_lﬂ4a‘o
variable g, ;, for each of the [ p; coefficients g, and the [ (p;-1)

Il ~Toga Jelnya ~Ingao

coefficients q,. Thus, in total, for groups consisting of n,, factors, for which

d,;=0(modp;), jel, , we will have T[] (p;-1)- [[ p;- (p;-1)
jEIMa.o j€|n4a_|n4a.0 j€|n45_|n4a,0
combinations of coefficients g, i=1,3. If I, =1, that is Nyao = Nyas We have

n4a‘0 Nya ’
Nya
H( p;, - 1) coefficients g, and one coefficient g, and q,, respectively (namely, the
i=1
value zero that will be removed from the combinations with other prime factors).

In the case of CPPs, there are four types of prime numbers that are considered
in stating the conditions in Table 2, each with two distinct sets of values of power of
the prime number. As the conditions for the cases 1.b) 3.a), 3.b) and 4.b) are the same,
there are 23 possible cases of decomposition of the number N in prime factors, which
lead to combinations of different conditions on the coefficients ¢,,q,,q,. Some of

these cases are for very small values of the number N , being trivial cases.

Firstly, the cases excluding the factors of types 3.a) or 3.b) or 4.b) are shown
(cases 4-11). However, because they are particular cases of the situations including
these factors, the number of CPPs can be obtained using the same formulas, but
replacing products including these factors by 1. This is the reason for which for cases
4-11 we will refer the next cases, that is, 12-23.

We analyse separately each case.
Case 1) The decomposition of N contains prime factors of type 1.a.), thatis N =2.

Since N =2 is even, it requires that g, <N/2=1. As g, can not be 0, there is

no CPP in this case, i.e. C,pp =0.

Case 2) The decomposition of N contains prime factors of type 2.a), that is N=3.
Since N =3, from the equivalence conditions, it requires that g, <N/3=1. As

g, can not be 0, there is no CPP in this case, i.e. C;cpp, =0.

Case 3) The decomposition of N containes prime factors of the type 1.a) and 2.a),
thatis N =6.
Because in this case from the equivalence conditions of CPPs it requires that

g, < % =1, there is no CPP, i.e. C, o =0.

Case 4) The decomposition of N containes prime factors of the type 2.b), thatis N 1is
a power of 3, greater than 1.

13



This is a particular case of 16), for odd N, therefore we can use equation (17) in

which the products [ | p?‘(nN“’j s (p;-1) and [] p?”‘”“fl are replaced by 1.
j=2 i

Case 5) The decomposition of N containes prime factors of the type 1.a) and 2.b).
This is a particular case of 17), therefore we can use equation (19) in which the

products ] p?‘(nN"”' ) (p; —1) and [ p” " are replaced by 1.
i=3 j=3

Case 6) The decomposition of N containes prime factors of the type 4.a).
This is a particular case of 18), for odd N, therefore we can use equation (23) in

which the products ﬁp?(”“"’i'l).(pj_l), ﬁp?(”wj“),( __1) and H pn“ 7 are
j=1 j=1

replaced by 1.
Case 7) The decomposition of N containes prime factors of the type 1.a) and 4.a).
This is a particular case of 19), therefore we can use equation (25), in which the

products ﬁ p?(nN‘”’ (p;-1), H P, 2y~ (pJ ~1) and H p;""" are replaced by 1.
i

Case 8) The decomposition of N containes prime factors of the type 2.a) and 4.a).
This is a particular case of 20), for odd N, therefore we can use equation (29) in

which the products sﬁap?(nN’“ (p;-1), l_IpJ e (p ~1) and Hp, are
=2

replaced by 1.
Case 9) The decomposition of N containes prime factors of the type 1.a) and 2.a) and
4.a).

This is a particular case of 21) therefore we can use equation (31) in which the

products ﬁ p?(nN"" (pJ —1) H P 2y~ (p —1) and H P’ "~ are replaced by 1.
i=3

Case 10) The decomposition of N containes prime factors of the type 2.b) and 4.a).
This is a particular case of 22) for odd N therefore we can use equation (35) in

which the products Sﬁapi(n””‘ (p;-1), I_IpJ e ( ;~1) and Hp”N 57 are
=2

replaced by 1.
Case 11) The decomposition of N containes prime factors of the type 1.a) and 2.b)
and 4.a).

This is a particular case of 23) therefore we can use equation (37) in which the

products ﬁ p?(nN'p’ (p;-1), H pJ e (p ~1) and H P "~ are replaced by 1.
)

Case 12) The decomposition of N containes prime factors of the type 1.b) or 3.a) or
3.b) or 4.b).

In this case, depending whether the factor of type 1.b) is present, there are two
situations.

14



When there is no factor of type 1.b), N is odd, 2 / N and 3 / N, and we can write

N = Hpn”’” p;>3, ny, >l when p;=3-k+LkeN and ny, >1 when

p; = 3-k +2,keN, j=1,5. Then, from the cases 3.a), 3.b) and 4.b) above, the number

of possible combinations for the g, is equal to H p?”‘”"fl ( p; —1) and the total number

j=1
of coefficients g, and g, respectively, are equal to || p?“’”"fl. The value ¢,=0
i=1

results only when q,; =0,V] =1,s, that is, for a single combination of coefficients

0, )= 1,5, that has to be removed. The number of CPPs will be equal to:

Ccpps = l_IpanJ (pj_l) (Hpn“" —1} (11)

From (11), we see that the number of CPPs is equal to O if the interleaver
length is a product of prime numbers greater than 3, of the form 3-k+1,k e N, each of
them to power 1.

When there is a factor of the type 1.b), N is even, 2|N and 3/ N and we can
write N=2™*-]p;"", with ng,>1, p;>3, ny, >1 when p;=3-k+LkeN and

i=2
Ny.p, >1 when p; =3-k+2,keN, ] =2,s. Then, from the cases 1.b), 3.a), 3.b) and 4.b)

above, the number of possible combinations for the coeffcient g, is equal to

oMt Hp"” P (pj—l) and the total number of coefficients g, and q,,

N, p; -1

respectively, is equal to 2™ Hp . Because this case requires from the

j=2
equivalence conditions that q,<N/2 and q,<N/2, a number of

S
oMt Hp N 2”’“’2-1_[ pj“""‘*1 possible coefficients g, and q,, respectively,
j=2

remains, from which one is zero. By removing the value g, =0, the number of CPPs
will be equal to:

i=2 i=2

Hpj (p,—l)E ] p?“”l‘lj
=2

From (12), we see that the number of CPPs is equal to 0 if the interleaver
length is 4 times a product of prime numbers greater than 3, of the form 3-k+1,k e N,

each of them to power 1.

(12)

15



Case 13) The decomposition of N containes prime factors of the type 1.a) and 3.a) or
3.b) or 4.b).

In this case, 2|N and 3/N and we can write N :2-H p?“"" , with p, >3,
=2

Nyp, 21 when p; =3-k+LkeN and Nyp, > 1 when p; =3-k+2,keN, j=2,s. From

the analysis for the cases 1.a) and 3.a), 3.b), 4. b) the number of possible combinations

for the coefficient g, is equal to 1-®(N/2) H p; ( J —1) and the total number of

S
Ny p: =1 .
:H p,"" , from which one

coefficients g, and q,, respectively, is equal to 1-
TN
value is 0. By removing the value ¢, =0 the number of CPPs will be equal to:

com ({15 00 [1 1551
[H py (Prl)Mlj pinN'p'l‘l]

From (13), we see that the number of CPPs is equal to O if the interleaver
length is 2 times a product of prime numbers greater than 3, of the form 3-k+1,keN,
each of them to power 1.

Caz 14) The decomposition of N containes prime factors of the type 2.a) and 1.b) or
3.a) or 3.b) or 4.b).

When there is no factor of type 1.b), N is odd, 2 / N and 3| N and we can write

(13)

N:3-Hp?N"’J’, with p; >3, N p, 21 when p;=3-k+L,keN and Ny.p, >1 when
j=2

p,=3-k+2,keN, j=2,s. In determining the number of coefficients, we consider

that for the two sets of coefficients valid for the factor of type 2.a), we have only a
single value for g, and g,. The number of possible combinations for the coefficient g,

is equal to 2-] p?”“" B ( p; —1), the number of coefficients g, is equal to ] p?”"’fl
j=2

j=2

and the number of coefficients ¢, is equal to H p?“"”'_l , from which one is 0. By
=2

removing the value g, =0, the number of CPPs will be equal to:

R o)
(2 Hp, (pj-l)j'(lj p?N“l‘lJ

From (14), we see that the number of CPPs is equal to 0 if the interleaver
length is 3 times a product of prime numbers greater than 3, of the form 3-k+1,keN,
each of them to power 1.

(14)
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When there is a factor of type 1.b), N is even, 6/N and we can write

N=2”N-2~3'Hp?“’”, with ng,>1, p;>3, Nyp, 21 when p;=3-k+LkeN and

Nyp, >1 when p;=3-k+2,keN, j =3,s. In determining the number of coefficients,

we consider that for the two sets of coefficients valid for the factor of type 2.a) we
always have @,, =0,,=0. From the two sets we have to keep only one for the

coefficients ¢, and qg,. The number of possible combinations for the coefficient g, is

equal to 2”N~2’1-2-1i[p?“’”"7"(pj—1)=2”N~2~li[p?“"’fl-(pj—1), the number of
j=3 j=3

S
coefficients @, and g, is equal to 2™ H p;"” ", from which one is 0. By removing
j=3

the value g, =0 the number of CPPs will be equal to:

NCPPS [ M2 Hpan] ( _1)] ( M2 -2 HpanJ j( M2~ -2 HpanJ _1]:
=[22“22-Iﬁrﬁﬁw“1X(Pj—1X}[2“2Z'flp?“f4—1]

=3 i=3

(15)

From (15), we see that the number of CPPs is equal to O if the interleaver
length is 12 times a product of prime numbers greater than 3, of the form
3-k+Lk eN, each of them to power 1.

Case 15) The decomposition of N containes prime factors of the type 1.a) and 2.a)
and 3.a) or 3.b) or 4.b).

vy, 21

In this case 6|/ N and we can write N :2-3-1_[ p?”“"' , with p, >3, n

j=3
when p;=3-k+LkeN and Ny, >1 when p; =3-k+2,keN, jzﬁ.The number of

possible  conmbinations  for the coefficient g results equal to

1.2 H p (pj ~1)=2- H p ( p; —1), the number of coefficients g, and g, is

equal to 1-1- H pJ _H p,”" , from which one is 0. After removing the value

g, =0 the number of CPPs will be equal to:

C,m = [2 H ol (p,- _1)](13 pj”wjlj.[lz ol _1j _
[2 Hp, w7, —l)j'[lj P?”’”_l‘l]

From (16), we see that the number of CPPs is equal to O if the interleaver
length is 6 times a product of prime numbers greater than 3, of the form 3-k+1,k e N,
each of them to power 1.

(16)

17



Case 16) The decomposition of N containes prime factors of the type 2.b) and 1.b) or
3.a) or 3.b) or 4.b).

When there is no factor of the type 1.b), N is odd, 2/ N and 3|N and we can

write N=3””~-‘~Hp?“’”, with ng;>1, p;>3, ny, 21 when p;=3-k+LkeN and

i=2

Nyp, >1 when p;=3-k+2,keN, j=2,s. It follows that the number of possible

combinations for the coefficient g, is equal to 2-3™" H p?“‘”"fl ( p; —1), the number

=2

S
of coefficients @, is equal to 3™~ H p?”"” " and the number of coefficients g, 1s
i=2

equal  to 2.3Ma72 li[ p?”"” - for 3t li[ p?“"” N -(pj - 1) of  the
j=2 =2

2-3”“’1'1_[ p?“’“‘_l-(pj—l) values for the coefficients ¢, and it is equal to

\ J
j=2

2.3™2. T p"" ™", for the other 3™ H P (pj —1) values for the coefficients
j=2

q,, from which one is 0. By removing the value g, =0 the number of CPPs will be
equal to:

CN o ( nN; 1 H pnN T ( _ _1)] ( nNz 1 H pnN P~ ] (2 3nN 3—2 H pnN P _1J+
{ 3. 5-1 H pnN pj ( ) _1)\] { 3" 5-1 H pnN pj~ \J [2 3M. 3-2 H p”N pj —lj = (17)
[2 3 (w5-1) H pj N .pj ~ (pJ _l)j (2 3nN 32 H pnN Py —1]

From (17), we see that in this case the nurnber of CPPs is always greater than 0.
When there is a factor of the type 1.b), N is even, 6/ N and we can write

N =2™=.3™ . [Tp"", with ny, >1, ny;>1, p;>3, ny, >1 when p;=3-k+1,keN
j=3
and Ny.p, >1 when p;=3-k+2,keN, j =3,s. It follows that the numbers of possible

combinations for the coefficient ¢, is equal to 2™ .2.3"".T] p;"” h (p;-1), the

j=3

S
number of coefficients g, is equal to 2™*7*.3™".T] p/*"" and the number of
i=3

S
coefficients a, is equal to M3 e for

]
j=2

oMl gl Hp”Nm ( __1) of the 2™="".2.3™="1. Hpn’“" -(pj—l) values for the

j=3

18



coefficient ¢ and equal to 2™27?.2.3™7 l_IpnN "' for the other

nNtf

3! H pnN e (pj —1) values of the coefficient g,, from which one is 0. By

removing the Value g, =0 the number of CPPs will be equal to:

Cum =227 [ () 27 [
( nN 22 . 3nN 372 H p”N P _1]_'_( nN 21 nN 371 H pnN PiT (pJ —l)j .
( nN 22 nN; 1 H pnN i } (2%‘22 2. 3nN<3—2 . f[ p?N‘pjfl _ 1] _

j=3

(18)

(e 0 ) 5, ) (e

From (18), we see that in this case the number of CPPs is always greater than 0.
Case 17) The decomposition of N containes prime factors of the type 1.a) and 2.b)
and 3.a) or 3.b) or 4.b).

In this case 6|N and we can write N =2-3"". Hpn“”', ny;>1, p;>3,

Nyp, 21 when p;=3-k+LkeN and ng o, >1 when p; =3- k+2 keN, j=3,s. From
the analysis of the cases 1.a), 2.b) and 3.a), 3.b), 4.b), it follows that the number of
possible combinations for the coefficient g, is equal to 1.2-3™" H p';”'“"fl '(p J. —1),

i=3
the number of coefficients g, is equal to 1-3™" H p?“““"fl and a number of
j=3

coefficients g, is equal to 1-2-3™2.T] p;*” ", for 1.3™". H P -(pj ~1) of the

i=2

1-2-3”“’3'1-1_[ p?“”’i_l-(pj—l) values for the coefficient ¢ and equal to

1-2-3”“’3"2-Hp?“’“’_1, for the other 1.3™'. Hpn“”' (pj—l) values for the
j=2

coefficient q,, from which one is 0. By removing the value g, =0 the number of CPPs
results equal to:

CN ,CPPs — [l 3he B H pJ ( 1)]-(1-3”’“1 H p?”~911j.
=3
(123”1\13—2 H p?N‘DJ*I _1}_{_[13%3—1 ﬁ p?N=9171 ( p] _I)J
i3 =
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-(1-3”“”1 11 p?”"”j-(l-z-s””ﬂz TIep —1} -
L] L]
nN 3~ N.pj ~ Ny 3—2 > My p; 1
Hp, (o, 1)| {2 3m T e - (19)
i=3

From (19), we see that in this case the number of CPPs is always greater than 0.
Case 18) The decomposition of N containes prime factors of the type 1.b) or 3.a) or
3.b) or 4.b) and 4.a).

In this case, as we have to address separately the factors of type 4.a), it is useful
to denote the number of such factors by n,, .

When there is no factor of the type 1.b), N is odd, 2 /( N and 3/( N and we can

S—N4a

write N = I_IpJ H P> P;>3, ny, =1 when p;=3-k+LkeN and ny, >1

j=sna+1
when  p, :3-k+2,keN, j=Ls-n,, and p,=3-k+2,keN,j=s-n_,+Ls. We
consider the analysis of the case 4.a), and denote by I, ={s—n,, +1,s-n,, +2,...,s}
the set of indices corresponding to the n,, prime factors of type 4.a) and by
L., € ln,» with 1<n,, , <n,,, the set of indices for which g, ; = O(mod pj), jel, It

follows that for a group of n,,, prime factors of type 4.a) the number of possible

combinations for the coefficient g, is equal to H (pJ —1) H pJ -(pj —1), the

J€lnga

number of coefficients g, is equal to H pj-H p?”""’fl and the number of
je na = o j=1

coefficients g, is equal to  [] (p;-1)- 1_1 p"*". In total, for a group of n,,,
j=1

je|n4a7|f‘45\.n

prime factors of the type 4.a), the number of CPPs will be equal to:

CN,CPPS,n%ﬂ :[ H (pj —1). ﬁ p;'varl ,(pj _1)}.
i€lhy i1

(20)
.[jell_ll pJ HpanJ }‘[J’dHl ( _1) HpanJ J

For a group of n,, prime factors of the type 4.a), we have to remove the case when
g, =0 and the number of CPPs will be:

CN.cPPs,ma:[ I (pj-l)'ﬁp?”’”’1-(pj—1)]-[ﬁ p;*" ][H pyn 1] 1)
j=s—ny,+1 j=1 j=1

When the condition g, ; = O(mod p j) is not met for any of the n,, prime factors of the

type 4.a), according to the condition 4.a) above, the number of CPPs will be:

20



(Hp (- )M [T »- sﬁpj }

j=s—ny,+1

[ Il <pj—1>-gfp?~=mlj= [T (poe(e =) TE (6 (0,1

j=s—ny,+1 j=s—ny,+1

(22)

The final number of CPPs results by summing the quantities from (20)-(22) for
=0,1,2,...,n,,,

Cy cpps = li[ (pj .(pj _1))‘31_-_‘[%(p?(n’\‘-9j|) ,(pj _1)j+

J=5—Ny,+1 j=1

+%21[(H( 1) Hp”““ a j—l)}

4a0

+HZI[H (py=1): H i Pi Sl_n[ p?(nN'pjil)‘(pi _1)]+ (23)
{Iﬁ@rUHR“’@ﬁﬂCﬁﬁwﬁl

J=5-ny,+1
From (23), we see that in this case the number of CPPs is always greater than 0.
When there is a factor of the type 1.b), N is even, 2|N and 3 / N and we can

SNy, s
write N =2"2. H p" - J] p;, with ng,>1, p,>3, Nyp 21 when

Jj=5—Ny,+1
p,=3-k+LkeN and Nyp, > 1 when p;=3-k+2,keN, j=2,s-n,, and
p,=3-k+2,k eN',j=s-n,, +1,s. We consider the case when N is odd and the

additional case 1.b), and use the same notations as above. The number of CPPs will be
equal to:

Ccrrs [ ) Hp"““’ (P - )M [T p,2m? Hp, ]

j=s—-ny,+1
j=s—ny,+1 j=2
ng,-1 Ny -
+n21[{161:[ ( '_1) nszl H p ( j_l)J.
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TS E ]{ IRCRIESR It

jelma—lrl4 Jeln —In a0

[H( S T (a0
el

= jS]j[ +1( pj (pJ _ 1))'23»nN,z*5 . lj_;[ (pj( N.Pji) (pj _1))+
Nyl SNy, (g

+Z[H (b-1): T »2™ ] l)-(pj—l)} 4
Mia o=t \ J€lnya0 Jelna=Tna j=2

+( f[ (pJ _ 1) .22<nN.z*3 . ﬁ p?‘(nNﬁj’l) (pJ _l)j 'EanJZ . ﬁ p?“ﬂj*l _IJ
i

j=5—n,+l i=2
From (24), we see that in this case the number of CPPs is always greater than 0.
Case 19) The decomposition of N containes prime factors of the type 1.a) and 3.a) or
3.b) or 4.b) and 4.a).

In this case 2|N and 3/N and we can write N =2- H p?”"’j . H p,, with

j=2 j=8—ny,+1
P; >3, Ny, 21 when p;=3-k+LkeN and ny o, >1 when p;=3-k+2,keN,
j=2,s-n,,and p,=3-k+2,k eN’, j=s-n,, +1,5. The number of CPPs results by
considering the previous case and the case 1.a), with the same notations used above:

SNy,

CN,CPPs:[l TND] p,_l)][ H P; - -1 H panJ j

j=s—ny,+1

( [T (p,-1)1T1 i p [(H 1) IH“p?“'””-(pj—l)J-

j=s—nya+1 j=2

J€hnya Tnya g i=2 Jeln, ~tngag j=2
j=s—ny,+1 j=1 i=2 =2
- 11 l(pj (p, 1))_1]—[‘:@ )(p]_l)j+
Nia -1 §—Nya Mo
S IO RO S
( [ (=) I o™ -UMHW” T
j=s—ny,+1 j=2 j=2
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From (25) we see that in this case the number of CPPs is always greater than 0.
Case 20) The decomposition of N contains prime factors of the type 2.a) and 1.b) or
3.a) or 3.b) or 4.b) and 4.a).

When there is no factor of the type 1.b), N is odd, 2 /( N and 3|N and we can

write N :3.l_fp;‘N=m. IT p;s p;>3,n, 21 when p,=3-k+L,keN and n,, >1

j=2 j=s—ny,+1

when p;=3-k+2,keN, j=2,5-n

4a 0

and p;=3-k+2,keN’,j=s-n, +1s. We

consider the analysis from the case 18 and the conditions from the case 2.a). For a
group of n,,, prime factors of the type 4.a), the number of CPPs is equal to:

CN,CPPs,nAa,U :( H (pj —1)-2. l;f p;‘N,p,—l _(pj _1)].
J j=2

Jelngag

(26)
.[jeul_lu i Hpan] }[Hl—[. (p,—l) Hpnw j

For group of n,, prime factors of the type 4.a), we have to remove the case when
g, =0 and the number of CPPs will be equal to:
Covcoran, =[ [T (p;-1)-2: H P, —I)MH Py J (H i 1] (27
j=s—nyq+l i=2
When the condition g, ; = O(mod p j) is not met for any of the n,, prime factors of the
type 4.a), the number of CPPs will be:

[2 Hp, (o —1)]'( Il pHp]

j=s—ny,+1

The number of CPPs results by summing the quantities in (27)-(28) for
4a0 _0 l 2

Cuom= TT (p-(p, =) 2T (0"-(py-1) s

j=s—ny,+1

) IV ICRUEN R )

Nya 0=l JEIrua‘g

'[-.H p,-.l_‘! p?“"]’”J-L,H (p,—1)-T1 p,"“’lﬂ+
] N4a,0 1= J

€lnga Elnga "ngap

A IL g2 T o T T )

j=s—-ny,+1
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j=s—ny,+1 j=2
Nya—1 S—Nyq 3 ”N.pj*I

+Zl[ll_[(pj_1)'2',l 1 Pj | pj( )-(pj—l)]+ (29)
Naa0=1\ J€lnso J€hn4a=Tnga0 1=

{ I 02 o o T

j=s—n,+l j=2
From (29) we see that in thls case the number of CPPs is always greater than 0.
When there is a factor of the type 1.b), N is even, 6|N and we can write

N :2”“42-3-1_[ap?“""'- H p,, with n,>1, p,; >3, Nyp, 21 when p, =3-k+1,keN
j=3

j=s—ny,+1

and n,. >1 when p,=3-k+2,keN, j=3,5s—-n and

N,pj 4a *

p;=3-k+2,keN’, j=s—n,, +1,5. We consider the subcase when N is odd and the
additional case 1.b). The number of CPPs results equal to:

Cume= (22 [T o) | TT pyez 1o

J=5-ny,+1
{ li[ ( j=1)-2me HpanJ ]+
J=8—ny,+1
Nya—1 S—Nya N
+ 2 l[ [T (p-1)-272-T] 1‘(p1_1)].
Ny 0=l JelMau j=3

€lny, ! € n4a7|n4a.0

I <pj—1>.z"w.zf_r1“p2~~~1~<pj—l>)
P

j=s—
1

N
erL( ( j‘1))'23'nw4'3ﬁ(p1(nw )(pj_l)jJ“
+n§1 [ H (p,— _1)' H P; 2P Sﬁ p?(nN‘prl) '(pi _1)J+

Nya+1
pj :
j=3

Nyao=1\ Jely,, i€lng~Tnsa i=3
+( [T (p,-1)-2 ﬁpf (p,—l)][ oM Hp"“’ —1] (30)
j=s—ny,+1

From (30) we see that in thls case the number of CPPs is always greater than 0.
Case 21) The decomposition of N contains prime factors of the type 1.a) and 2.a) and
3.a) or 3.b) or 4.b) and 4.a).
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In this case 6|N and we can write N:2-3-1_[ap?N“”- IT »;, with p,>3,

j=3 J=8-ny,+1

Ny p, 21 when p;=3-k+1,keN and Nyp, > 1 when p;=3-k+2,keN, j=3,s-n,,

and pj:3-k+2,keN ,J=s-n,,+1,s. In determining the number of CPPs, we

consider the case 20) for N odd and that for the case 1.a), there is a single set of valid
coefficients. The number of CPPs will be:

Co o = [2 le -(pj—1)][ 1 », Hpj MJH (pj—1)-:ﬁ:p?wwj+

=5—Ny,+1 =511y, +1
+n4za:1[{j;|~|_‘[ (pj _1)2 ];_Il p?N‘pj—l ( pj —1)]~(]6I l__JI: pj . IJ_I p?N,pj—lj.

.LJ‘EIH (pj—l)'ljp?N‘pjl]]+
{H (p,=1)-2- HP"””‘ (pj—l)j'[ﬁP?“’p"_l}[l_[%p?wl-lj
]

=5—Ny,+1 j=3 j=3

= JL et (o
Nya—1 EalUTI, -

+Z[H(pj—1)‘ p2-[] ) "l)~(|0,4—1)J+ (31
Nyao=1\ Jeln,, J€lngg ~lnga o i=3

(1L oo fr o)1
j=5—Ny,+1 i=3

From (31) we see that in thls case the number of CPPs is always greater than 0.
Case 22) The decomposition of N contains prime factors of the type 2.b) and 1.b) or
3.a) or 3.b) or 4.b) and 4.a).

When the is no factor of the type 1.b), N is odd, 2/N and we can write

SNy

N =3™. Hpn“‘”- [T py» nus>1, py>3, ny, 21 when p;=3-k+lLkeN and

j=s—-ny,+1
Np>1when p,=3-k+2,keN, j=2,s-n, ,and p, =3- k+2,keN', j=s-n, +1,s.

We consider the analysis from the case 18 and the conditions from the case 2.b). For a
group of n,, , prime factors of the type 4.a), the number of CPPs is equal to:

CN,CPPs,nAaﬂ:Z'[ H (pj_l) nN31 H pnNPJ ( _1)]

JEl”‘la‘()

[ IR O ][ 1 <p-—1>23”“‘23ﬁa"””p'} >

€ n4a_|”43.ﬂ Ma_lr‘Aa,ﬂ
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For a group of n,, prime factors of the type 4.a), we have to remove the case when
g, =0 and the number of CPPs will be equal to:

Cucoren, = 2-[ [T (p-1)-3 T o (p, —1)].
j=2

j=s—ny,+1

( nN 3-1 H pnN pj j [2 3n,“—z H pnN Py _l]

When the condition g, ; = O(mod p j) is not met for any of the n,, prime factors of the
type 4.a), the number of CPPs will be:

CN,CPPs,o ( anl HpanJ ( ) )j( H p] anl l—[pnmpJ \J
j=s—ny,+1
[ 11 (pp2e T

j=s—ny,+1

(33)

(34)

The number of CPPs results by summing the quantities in (32)-(34) for
4a0 _0 l 2

CN,CPPs :2-[3%,3—1 . ﬁ p?N,Pj*1 ( ) )] [ H pj nN3 -1 H pnN o }
j=2

j=8-ny,+1

(s
j=s—Ny,+1 -

Nya—1 BT Mo
+2. z [{ H (pj_l)‘3nN,3—1,H pj pj 1'(pj _1)}
j=2
jel i jel

42 a0 =2 €lnga ~Inga o
+2-[j=sfn[+l(pj—1)-3”N’3‘1-:]j p?“"’l‘-(pj—l)]-[ﬂf1 SJ% P J (2 CAE Hp u” —1}:
+4.nn4za:_ll[j!|"[(pj.—l).33'”N~3“.je']"[I p,- sﬁpj ( .—1)]+
+2-(j=s]in[“(p-—l) Hp, (p,—l)j-[za”w2-:f[jp?“"Pf'—1] (35)

From (35) we see that 0 in thls case the number of CPPs is always greater than.
When there is a factor of the type 1.b), N is even, 6|N and we can write

N =2M=2.3Ms. l_[pJ H p,, with n.,>1, ng,>1, p;>3, ng, >1 when

j=3 j=s—Nya+1
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p,=3-k+LkeN and ng, >1 when p,=3-k+2,keN, j=3s-n

5 and

4a >
p;=3-k+2,keN, j=s—n, +1,5s.

We consider the subcase when N is odd and the additional case 1.b). The number of
CPPs results equal to:

CNCPPs (2 Mol gl Hpan, ( _ )j[ H p] M2 3l ﬁpan’ j

j=s-ny,+1

(11 (e flo).
i=3

j=s—ny,+1

Nyl SNy, n B
23 [[ [T (py—1)-2™" 3" T py* 1-(pj—1)}
=3

Nya0=1 i€l

jel “ |

€ n4a_|”43.0 € "4a_|n4a.n

+2-[ li[ (pj_l) oMol gl SHpan, (pj_l)j ( M2 gl Hpan' j
j=s—Nya+l
(anz—Z 2. 3nN3—2 ﬁ’pnN bj~ _1):
= ﬁ (pJ (pJ _1)).23‘(”&2‘1) e Sl Ea 'sﬁ‘(p?("wm]) (pj _1)j+

j=s—nga+l -
oot S Ma N ,p;
znzl[%—[(pi_l)'jeln pj.z {meo-1) 33— Hpj i~ ( _—I)J-f-
j=s—ny+1 =

[ e 3 H i —1} (36)

From (36) we see that in this case the number of CPPs is always greater than 0.
Case 23) The decomposition of N contains prime factors of the type 1.a) and 2.b) and
3.a) or 3.b) or 4.b) and 4.a).

s-n,, s
In this case N is even, 6|N and we can write N=2-3"-T] p;"" - [] ;.

j=3 j=8-ny,+1

>1 when p;=3-k+LkeN and ny, 6 >1 when

with n . = 5 Pj

N,3>13 pj>3> nN
p;=3-k+2,keN, j=35s-n,, and p,=3-k+2keN,j=s-n, +1s. In

determining the number of CPPs we consider the case 22) for odd N and that for the
case 1.a), there is a single set of valid coefficients. The number of CPPs will be:

C cpps 22'[3%31 ) l_f p?N‘pjil'(pj _1)] [ H p;-3 3 H pJ }
i=3

j=s-ny,+1
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(11 6ry2sTine):

Jj=8—ny,+1

s-n,

2% [( [T (p=1)-3" T o™ (, —1)}

Nya 0=l i€lnga i=3

S—M4q

(H 3 Hp MH (py=1)-2:3% [ T oy ﬂ+

N4a " 'M4a 0 €lnga "'ma 0

2 T (-0 T (0
[ nN;—l Sl_m[apanJ J[z 3nN;2 SﬁpanJ _1]:
:4.[ ﬁ (pj'(pj—l))@}n’“’r“.ﬁ‘p?(nN’pJ_l)'(pj—l)]‘F

j=s—ny,+1 j=3

Nya0=1

s ( T (p,-10)-3"* T py-T1p™ " (p, —1)]+ (37)

JEI”Aa JEI”Aailr'Aa‘O =3

2 T1 (o3 T oy {2 T o

j=5—n4+1
From (37) we see that in thls case the number of CPPs is always greater than 0.
We bring together the conclusions from all previous cases and conclude that
the number of CPPs is equal to O if the interleaver length is of the form:

N =2“”~2-3““’3-H p;, with ng,=0,2, n,;=0,1, p; >3, with p, =3-k+1keN,

j=3

j=3,s (38)

Such lengths have to be avoided in designing CPP based interleavers.

By comparing equations (10) and (38), it can be concluded that for any
interleaver length for which the number of CPPs is 0, the number of QPPs is also 0.
But there are lengths for which the number of QPPs is 0, but the number of CPPs is
greater than 0. Such lengths are generated by multiplying by one, two or four products
of prime numbers greater than 2, each to the power 1. In each product, there should be
at least a prime number of the form 3-k +2,k e N', so that:

N = 2™ .3”N=3.1_[a p,- [[ p,,withng,=02,n,,=01, p,>3, with
j=3

J=s—ny,+1

p;=3-k+LkeN,if j=3,5-n, and p,=3-k+2,keN",if j=s—n, +1s,s>n, >1

(39)

For the lengths of the type in (39) the CPP based interleavers can be used
instead of QPP based ones. The number of lengths for which the number of QPPs is 0
is significantly greater than the number of lengths for which the number of CPPs is
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greater than 0. For example, from 2 to 10,000 there are 7098 lengths for which the
number of QPPs is 0 and only 2264 lengths for which the number of CPPs is 0.

6. Conclusions

This paper presents a method for determining the number of true different modulo
N PPs using the Chinese remainder theorem, when the conditions for the coeficients of
PPs are known, such as for QPPs or CPPs. The method was applied to determine the
number of true different QPPs or CPPs. This number is useful when QPPs or CPPs are
used for turbo code interleavers and we choose a certain length of interleaver N. If the
number of true different QPPs or CPPs is large, we could have a large number of good
interleavers with the desired length. If this number is small, the possibility to find
good interleavers for turbo codes is low and if this number is 0, obviously, there is no
interleaver with that length.
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