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Abstract—Interleavers are important blocks of the turbo codes, their types and dimensions having a 
significant influence on the performances of the mentioned codes. If appropriately chosen, the 
permutation polynomial (PP) based interleavers lead to remarkable performances of these codes. The 
most used interleavers from this category are quadratic permutation polynomials (QPPs) and cubic 
permutation polynomials (CPPs). Based on the necessary and sufficient conditions for the coefficients 
of the second and third degree polynomials to be QPP and CPP, respectively and on the Chinese 
remainder theorem, in this paper we determine the number of true different QPPs that cannot be 
reduced to linear permutation polynomials (LPPs), and the number of true different CPPs that cannot 
be reduced to QPPs or LPPs. This is of particular interest when we need to find QPP or CPP based 
interleavers for turbo codes. 
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different QPPs or CPPs, Long Term Evolution standard. 
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1. Introduction 
The interleaver is a critical component of a turbo code. The algebraic interleavers 

are preferred because of several advantages: analytical design, outstanding 
performances and simple, practical implementation with high-speed, low-power 
consumption and little memory requirements [1]. 

From the category of permutation polynomial (PP) based interleavers, the 
quadratic permutation polynomial (QPPs) based ones [1-15] have got the most 
attention. They are used in the Long Term Evolution (LTE) standard [16]. Although 
QPP interleavers have remarkable performances, for some lengths, the cubic 
permutation polynomial (CPP) interleavers [17-19] bring improvements over QPPs in 
terms of bit error rate (BER) and frame error rate (FER) for Additive White Gaussian 
Noise (AWGN) and for independent fading Rayleigh channels, as shown in [17]. 

This paper proposes a way to determine the number of true different QPPs that 
cannot be reduced to linear permutation polynomials (LPPs) and the number of true 
different CPPs that cannot be reduced to QPPs or LPPs. The used method is based on 
the Chinese remainder theorem and is very simple to be applied. The number of true 
QPPs was also found in [8] in other way. The number of PPs with degree at most six 
was addressed in [20], but this approach did not consider the equivalence conditions 
and nor the number of polynomials, separately, for each polynomial degree.  

The paper structure is as follows. QPPs and CPPs over integer rings are reviewed 
in Section 2. In Section 3, the used method based on the Chinese remainder theorem is 
presented. Section 4 provides the formulas for the number of true different QPP based 
interleavers, while Section 5 provides the formulas for the number of true different 
CPP based interleavers. Section 6 concludes the paper. 
 

2. QPP and CPP Based Interleavers over Integer Rings 
A PP based interleaver of degree n is of the form: 

   2
0 1 2 modn

nx q q x q x q x N      ,   (1) 

where N  is the interleaver length and the coefficients kq , 1,k n  are chosen so that 

 x  from (1), with 0,1, , 1x N  , is a permutation of the set  0,1, , 1N N   . 

Without loss of generality of the problem dealt with in the paper, we consider 0 0q  . 

For 2n   and 3n  in (1), a QPP and a CPP results, respectively. 
The conditions for the coefficients 1 2,q q , so that  x  in (1) with 2n   is a 

permutation polynomial, are given in [1] and the conditions for the coefficients 

1 2 3, ,q q q , so that  x  with 3n   is a permutation polynomial, are given in [18-19]. 

They are summarized in Table 1 for QPPs and in Table 2 for CPPs, respectively, 
depending on the factors of decomposition in prime factors of the interleaver length 
N , as: 
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 ,       (2) 

where   is the set of prime numbers, the notation |p N  means that p  divides N and 

, 1N pn   for a finite number of prime numbers. 

 
Table 1: Conditions for the coefficients 1 2,q q  so that  x  in (1) with 2n   is a 

permutation polynomial 
 
1.a) 2p   

,2 1Nn      1 2 0 mod 2q q   

1.b) ,2 1Nn    1 0 mod 2q   and  2 0 mod 2q 

2. 2p   
, 1N pn    1 0 modq p ,  2 0 modq p  

 
Table 2: Conditions for the coefficients 1 2 3, ,q q q  so that  x  in (1) with 3n   is a 

permutation polynomial 
 
1.a) 2p   

,2 1Nn      1 2 3 0 mod 2q q q    

1.b) ,2 1Nn    1 2 30, 0, 0 mod 2q q q    

2.a) 3p   
,3 1Nn      1 3 20, 0 mod 3q q q    

2.b) ,3 1Nn      1 1 3 20, 0, 0 mod 3q q q q     

3.a)  3 | 1p   , 1N pn    1 2 30, 0, 0 modq q q p    

3.b) , 1N pn    1 2 30, 0, 0 modq q q p    

4.a)  3 | 1p   
3p   

, 1N pn    2
2 1 33 modq q q p  if  3 0 modq p  and  

   1 20 mod , 0 modq p q p   if  3 0 modq p  

4.b) , 1N pn    1 2 30, 0, 0 modq q q p    

 

3. A Simple Method for Determining the Number of True 
Different Permutation Polynomial Based Interleavers Using 
the Chinese Remainder Theorem 

 
In the following, we recall the result of the Chinese remainder theorem. 
Theorem 1. Suppose 1, , kn n  are positive integers that are pairwise coprime. 

Then, for any given sequence of integers 1, , ka a , there is an integer x  solving the 

following system of simultaneous congruences: 
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1 1mod

modk k

x a n

x a n




 

      (3) 

Furthermore, all solutions x  of this system are congruent modulo the product 

1 kN n n   . Hence 

 mod ,1ix y n i k       modx y N   (4) 

Theorem 1 ensures that for two different sequences 1, , ka a , two distinct 

modulo N solutions exist. 
The method that we present in this paper uses the result of the following 

theorem from [2]: 

Theorem 2 ([2]). For any ,

1

N p j

s
n

j
j

N p


 , such that *s , , 1
jN pn  , 1,j s  , 

 x  is a modulo N PP, iff  x  is also a PP modulo ,N p j
n

jp , 1,j s  . 

 
Assume that  x  is a PP. Let there be: 

 ,

, mod N p j
n

i j i jq q p , 1,j s  , 1,i n  .  (5) 

Since the numbers ,N p j
n

jp , 1,j s , are relatively prime to each other, from the 

Chinese remainder theorem we have that for 1,i n  , if we know the values 

,, nN p j
j

i j
p

q  , 1,j s , then there is a single number i Nq  , that is precisely the 

coefficient iq  for the assumed PP.  

Since    , ,

,
1 1

mod modN p N pj j

n n
n ni i

i j i j j
i i

q x p q x p
 

        
   
  , from the Theorem 2 

above, it results that if the coefficients 
,, nN p j

j
i j

p
q  , 1,i n , 1,j s  , are chosen so that 

the polynomials  ,

,
1

mod N p j

n
ni

i j j
i

q x p


  
 
 , 1,j s  , are modulo ,N p j

n

jp PPs, 1,j s  , then 

the coefficients i Nq  , 1,i n  determine a modulo N  PP. Therefore, we can 

determine the number of modulo N  PPs in the following way: 

a) We decompose the interleaver length in prime factors ,

1

N p j

s
n

j
j

N p


 , such that 

*s , , 1
jN pn  , 1,j s  . 

b) For any 1,j s , we find all the coefficients 
,, nN p j

j
i j

p
q  , 1,i n , so that the 

polynomial  ,

,
1

mod N p j

n
ni

i j j
i

q x p


  
 
  is a modulo ,N p j

n

jp  PP. This can be done easily if 

we know the conditions the coefficients of the PP must met depending on jp  and 
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, jN pn , as is the case for QPPs and CPPs. We calculate the number of such modulo 

,N p j
n

jp PPs from the coefficient conditions. 

c) To determine the true number of different PPs, we must take into account the 
equivalence conditions imposed for PPs of degree n  imposed and considering 0nq  . 

For QPPs and CPPs, these equivalence conditions are given in [8-9] and [17], 
respectively. The condition 0nq   is met only when , 0n jq  , 1,j s  . For the 

remaining number of coefficients 
,, nN p j

j
i j

p
q  , 1,j s , we compute the total number 

of combinations that can lead to a modulo N  PP. It will be the product of numbers of 
all coefficient combinations for 1,j s .  

d) In the next section, we apply the method described above for the case of QPPs 
and CPPs and determine the true number of different QPPs and CPPs, respectively, 
depending on the types of factors that appear in prime factor decomposition of N . As 
in [8], we denote by  N  the Euler function, which is the number of numbers 

relatively prime with N , smaller than N . It is given by the following equation: 

 
,

|

1
1

p
p N

N N
p

 
    

 
      (6) 

 

4. Determining the Number of True Different Quadratic 
Permutation Polynomial Based Interleavers 

 
We mention that the equivalence condition of QPPs [8] requires that 2 2q N , 

when 2 | N . 

It is useful to determine the values ,i jq , 1,2i  , 1,j s , for the Quadratic Null 

Polynomial (QNP). From [8], it is known that the only QNP is obtained for 

1 2, 2q q N , when 2 | N . Therefore, in this case the same QPP interleaver results, if the 

QPP coefficients change from  1 2,q q  to         1 22 mod , 2 modq N N q N N  . 

Thus, if ,,2

2

2 N p jN

s
nn
j

j

N p


  , with ,2 1Nn  , 2jp   and , 1
jN pn  , 2,j s , then 

,,2 1

2

2 2 N p jN

s
nn
j

j

N p



   and we have: 

- For ,2 1Nn  : ,1 1iq   and , 0i jq  , 1,2i  , 2,j s  . Therefore, in this case the 

same QPP interleaver results, if the values ,i jq , with 1,2i   and 2,j s , remain the 

same and the values ,1iq , 1,2i  , change to    ,1 1 mod 2iq  , 1,2i  . 

- For ,2 1Nn  : ,1 0iq   and , 0i jq  , 1,2i  , 2,j s  . In this case, all the 

coefficients ,i jq , 1,2i  , 1,j s , remain the same for equivalent QPPs.  
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In the case of QPPs, we have three types of factors as shown in Table 1. These 
are considered in the following and for each type of prime factor, the number of QPPs 
is determined. 

Case 1.a). If 2p   and ,2 1Nn  , the coefficients  ,1 2 0,1iq   , 1,2i  . The 

condition    1,1 2,1 0 mod 2q q   is met for 1,1 2,10, 1q q   or 1,1 2,11, 0q q  . Since the 

two sets of coefficients lead to equivalent QPPs, from the two combinations only one 
must be kept, for example 1,1 2,11, 0q q  , combined with other prime factors. 

Case 1.b). If 2p   and ,2 1Nn  , the coefficients 
,2,1 2

nNiq  , 1,2i  . The condition 

 1,1 0 mod 2q   is met for  ,2 ,2 12 2N Nn n    coefficients. The condition  2,1 0 mod 2q   

is met for 
,2

,2 12
2

2

N

N

n
n   coefficients, from which one is zero. In this case, from the 

equivalence conditions of QPPs, it results that all values greater or equal to 
,2

,2 12
2

2

N

N

n
n   have to be removed, i.e. 

,2

,2

1
22

2
2

N

N

n
n


  values, leading to 

,2

,2

1
22

2
2

N

N

n
n


  

values for 2,1q . 

Case 2). If 2p   and , 1N pn  , the coefficients 
,, nN pi j p

q  , 1,2i  . The condition 

 1, 0 modjq p  is met for    , , 1 1N p N pn np p p     coefficients. The 

condition  2 0 modq p  is met for 
,

, 1
N p

N p

n
np

p
p

  coefficients, from which one is zero. 

We apply the method described in Section 3 and distinguish three situations for the 
decomposition in prime factors of  N , namely: 

a) 2 |N , that is ,

1

N p j

s
n

j
j

N p


 , with 2jp   and , 1
jN pn  . Then, from Case 2) above, 

the number of possible combinations for the coefficient 1q  results equal to 

 , 1

1

1N p j

s
n

j j
j

p p




   and the number of coefficients 2q  is equal to , 1

1

N p j

s
n

j
j

p



 . The value 

2 0q   results only when 2, 0, 1,jq j s   , that is for only one combination of the 

coefficients 2, , 1,jq j s , which has to be removed. The number of QPPs will be: 

  , ,1 1

,
1 1

1 1N p N pj j

s s
n n

N QPPs j j j
j j

C p p p
 

 

 
     

 
      (7) 

Equation (7) is equivalent to Theorem 6, case a) from [8]. 
From (7) we see that the number of QPPs is equal to 0, when the interleaver length 

is a product of prime numbers greater than 2, each of them to the power 1. 

b) 4 | N , that is ,,2

2

2 N p jN

s
nn
j

j

N p


  , with ,2 1Nn  , 2jp   and , 1
jN pn  , 2,j s . 

From the cases 1.b) and 2) above, the number of possible combinations for the 
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coefficient 1q  results equal to  ,,2
11

2

2 1N p jN

s
nn
j j

j

p p




    and the number of coefficients 

2q , equal to ,,2
11

2

2 N p jN

s
nn
j

j

p




 . Since from the equivalence condition of QPPs we must 

have 2 2q N , a number of , ,,2 ,2
1 11 2

2 2

1
2 2

2
N p N pj jN N

s s
n nn n
j j

j j

p p
  

 

      coefficients remain, 

from which the value 2 0q   has to be removed, finaly remaining ,,2
12

2

2 1N p jN

s
nn
j

j

p




   

values for true different QPPs. Then, the number of QPPs will be: 

  , ,,2 ,2
1 11 2

,
2 2

2 1 2 1N p N pj jN N

s s
n nn n

N QPPs j j j
j j

C p p p
  

 

 
       

 
     (8) 

Equation (8) is equivalent to Theorem 6, case b) from [8]. 
From (8), we see that the number of QPPs is equal to 0 when the interleaver length 

is a multiple of 4 of a product of prime numbers greater than 2, each of them to the 
power 1. 

c) 2 | N  and 4 |N , that is ,

2

2 N p j

s
n

j
j

N p


  , with 2jp   and , 1
jN pn  , 2,j s . From 

the cases 1.a) and 2) above the number of possible combinations for the coefficient 1q  

results equal to  , 1

2

1N p j

s
n

j j
j

p p




   and the number of coefficients 2q  equal to 

, 1

2

N p j

s
n

j
j

p



 . We mention that in this case all the , 1

2

N p j

s
n

j
j

p



  coefficients 2q  are equal 

modulo N  to , 1

2

N p j

s
n

j
j

p



  different coefficients 2 2q N . Therefore, we have to only 

remove the value 2 0q  , finally leading to , 1

2

1N p j

s
n

j
j

p




  values for the coefficient 2q  

of true different QPPs. Then the number of QPPs will be: 

  , ,1 1

,
2 2

1 1N p N pj j

s s
n n

N QPPs j j j
j j

C p p p
 

 

 
     

 
     (9) 

Equation (9) is equivalent to Theorem 6, case c) from [8]. 
From (9) we see that the number of QPPs is equal to 0 when the interleaver length 

is a multiple of 2 of a product of prime numbers greater than 2, each of them to the 
power 1. 

From the cases a), b) and c), we conclude that the number of QPPs is 0 when the 
interleaver length is  

,2

2

2 N

s
n

j
j

N p


  , with ,2 0,2Nn  , 2jp  , 2,j s    (10) 

Such lengths have to be avoided in designing QPP based interleavers. 
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5. Determining the Number of True Different Cubic 
Permutation Polynomial Based Interleavers 

 
We note that from the equivalence conditions for CPPs [17], we must have: 
- 2 2q N  and 3 2q N , when 2 | N  and 3|N . 

- 3 3q N , when 3 | N  and 2 |N . 

- 2 2q N  and 3 6q N , when 6 | N . 

The 10 Cubic Null Polynomials (CNPs) are given in [17]. The values ,i jq , 

1,2,3i  , 1,j s , for these CNPs are given below, where the order of CNPs is that 
from [17] and the only QNP is left the last.  

- If 2 | N  and 3|N , that is ,,2

2

2 N p jN

s
nn
j

j

N p


  , with ,2 1Nn  , 2jp   and , 1
jN pn  , 

2,j s , there are two CNPs to which the only QNP is added. For these three NPs of 

degree at most equal to 3, the values of the coefficients ,i jq , 1,2,3i  , 1,j s , are, in 

terms of ,2Nn : 

1) when ,2 1Nn  , we have: 1.I) 1,1 3,1 1q q  , 2,1 0q   and , 0i jq  , 1,3i  , 

2,j s  ; 1.II) 2,1 3,1 1q q  , 1,1 0q   and , 0i jq  , 1,3i  , 2,j s  ; 1.III) 

1,1 2,1 1q q  , 3,1 0q   and , 0i jq  , 1,3i  , 2,j s  . 

2) when ,2 1Nn   for all the three NPs we have: 2.I), 2.II), 2.III) 

1,1 2,1 3,1 0q q q   ,  and , 0i jq  , 1,3i  , 2,j s  . 

- If 3 | N  and 2 |N , that is ,,3

2

3 N p jN

s
nn
j

j

N p


  , with ,3 1Nn  , 2jp   and , 1
jN pn  , 

2,j s , there are two CNPs. The values of the coefficients ,i jq , 1,2,3i  , 1,j s , for 

these two CNPs are given in terms of ,3Nn : 

1) when ,3 1Nn  , we have: 1.III) 1,1 3,12; 1q q   or 1,1 3,11; 2q q  , depending 

on the product ,

2

N p j

s
n

j
j

p

 , 2,1 0q   and , 0i jq  , 1,3i  , 2,j s  ; 1.IV) 

1,1 3,11; 2q q   or 1,1 3,12; 1q q  , depending on the product ,

2

N p j

s
n

j
j

p

 , 2,1 0q   

and , 0i jq  , 1,3i  , 2,j s  . 

2) when ,3 1Nn  , for both CNPs, we have: 2.III), 2.IV) 1,1 2,1 3,1 0q q q   , 

and , 0i jq  , 1,3i  , 2,j s  . 

- If 6 | N , that is ,,2 ,3

3

2 3 N p jN N

s
nn n
j

j

N p


   , with ,2 1Nn  , ,3 1Nn  , 2jp   and 

, 1
jN pn  , 3,j s , there are 10 CNPs, to which the only QNP is added. The values of 
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the coefficients ,i jq , 1,2,3i  , 1,j s , for these 11 NPs of degree at most equal to 3 

are given in terms of ,2Nn  and ,3Nn : 

1) when ,2 1Nn   and ,3 1Nn  , we have: 1.I) 1,1 3,1 1q q  , 2,1 0q  , and 

, 0i jq  , 1,3i  , 2,j s  ; 1.II) 2,1 3,1 1q q  , 1,1 0q  , and , 0i jq  , 1,3i  , 

2,j s  ; 1.III) 1,1 2,1 3,1 0q q q   , 1,2 3,22; 1q q   or 1,2 3,21; 2q q  , depending 

on the product ,

3

N p j

s
n

j
j

p

 , 2,2 0q  , and , 0i jq  , 1,3i  , 3,j s  ; 1.IV) 

1,1 2,1 3,1 0q q q   , 1,2 3,21; 2q q   or 1,2 3,22; 1q q  , depending on the product 

,

3

N p j

s
n

j
j

p

 , 2,2 0q  , and , 0i jq  , 1,3i  , 3,j s  ; 1.V) 1,1 3,1 1q q  , 2,1 0q  , 

1,2 3,22; 1q q   or 1,2 3,21; 2q q  , depending on the product ,

3

N p j

s
n

j
j

p

 , 2,2 0q  , 

and , 0i jq  , 1,3i  , 3,j s  ; 1.VI) 1,1 0q  , 2,1 1q  , 3,1 1q  ; 1,2 3,22; 1q q   

or 1,2 3,21; 2q q  , depending on the product ,

3

N p j

s
n

j
j

p

 , 2,2 0q  , and , 0i jq  , 

1,3i  , 3,j s  ; 1.VII) 1,1 1q  , 2,1 1q  , 3,1 0q  ; 1,2 3,22; 1q q   or 

1,2 3,21; 2q q  , depending on the product ,

3

N p j

s
n

j
j

p

 , 2,2 0q  , and , 0i jq  , 

1,3i  , 3,j s  ; 1.VIII) 1,1 1q  , 2,1 1q  , 3,1 0q  ; 1,2 3,22; 1q q   or 

1,2 3,21; 2q q  , depending on the product ,

3

N p j

s
n

j
j

p

 , 2,2 0q  , and , 0i jq  , 

1,3i  , 3,j s  ; 1.IX) 1,1 1q  , 2,1 0q  , 3,1 1q  ; 1,2 3,22; 1q q   or 

1,2 3,21; 2q q  , depending on the product ,

3

N p j

s
n

j
j

p

 , 2,2 0q  , and , 0i jq  , 

1,3i  , 3,j s  ; 1.X) 1,1 0q  , 2,1 1q  , 3,1 1q  ; 1,2 3,22; 1q q   or 

1,2 3,21; 2q q  , depending on the product  ,

3

N p j

s
n

j
j

p

 , 2,2 0q  , and , 0i jq  , 

1,3i  , 3,j s  ; 1.XI) 1,1 2,1 1q q  , 3,1 0q  , and , 0i jq  , 1,3i  , 2,j s  . 

2) when ,2 1Nn   and ,3 1Nn  , we have: 2.I) 1,1 3,1 1q q  , 2,1 0q  , and 

, 0i jq  , 1,3i  , 2,j s  ; 2.II) 2,1 3,1 1q q  , 1,1 0q  , and , 0i jq  , 1,3i  , 

2,j s  ; 2.III) and 2.IV)  1,1 2,1 3,1 0q q q   , and , 0i jq  , 1,3i  , 2,j s  ; 

2.V) and 2.IX) 1,1 3,1 1q q  , 2,1 0q  , and , 0i jq  , 1,3i  , 2,j s  ; 2.VI) 

and 2.X) 1,1 0q  , 2,1 1q  , 3,1 1q  , and , 0i jq  , 1,3i  , 2,j s  ; 2.VII) and 

2.VIII) 1,1 1q  , 2,1 1q  , 3,1 0q  ; and , 0i jq  , 1,3i  , 2,j s  ; 2.XI) 

1,1 2,1 1q q  , 3,1 0q  , and , 0i jq  , 1,3i  , 2,j s  . 
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3) when ,2 1Nn   and ,3 1Nn  , we have: 3.I) and 3.II) 1,1 2,1 3,1 0q q q   , and 

, 0i jq  , 1,3i  , 2,j s  ; 3.III) - 3.X) 1,1 2,1 3,1 0q q q   , 1,2 3,22; 1q q   or 

1,2 3,21; 2q q  , depending on the product ,

3

N p j

s
n

j
j

p

 , 2,2 0q  , and , 0i jq  , 

1,3i  , 3,j s  ; 3.XI) 1,1 2,1 3,1 0q q q   , and , 0i jq  , 1,3i  , 2,j s  . 

4) when ,2 1Nn   and ,3 1Nn  , we have: 4.I) - 4.XI) , 0i jq  , 1,3i  , 

1,j s  . 
In the case of CPPs, there are four types of prime factors, as shown in Table 2. 

They are considered below and we determine the number of CPPs for each type of 
prime factor. The prime factor 2 is considered the first one, the prime factor 3 is 
considered the second one and the other prime factors are considered with arbitrary 
indices 3j  . 

Case 1.a). If 2p   and ,2 1Nn  , the coefficients  ,1 2 0,1iq   , 1,2,3i  . The 

condition    1,1 2,1 3,1 0 mod 2q q q    is met for the following coefficient combinations: 

,1iq , 1,2,3i  : 1,1 2,1 3,10, 0, 1q q q    or 1,1 2,1 3,10, 1, 0q q q    or 1,1 2,1 3,11, 0, 0q q q    or 

1,1 2,1 3,11, 1, 1q q q   . Since the four sets of coefficients lead to equivalent CNPs, only 

one must be kept in combination with other types of prime factors. 
Case 1.b). If 2p   and ,2 1Nn  , the coefficients 

,2,1 2
nNiq  , 1,3i  . The condition 

 1,1 0 mod 2q   is met for  ,2 ,2 12 2N Nn n    coefficients. The condition  2,1 0 mod 2q   

or  3,1 0 mod 2q   is met for 
,2

,2 12
2

2

N

N

n
n   coefficients. From the equivalence conditions 

of CPPs for 2 | N  and 3|N , it results that from the values of 2,1q  and 3,1q  only 
,2

,2

1
22

2
2

N

N

n
n


  lead to different permutations. 

Case 2.a). If 3p   and ,3 1Nn  , the coefficients  ,2 3 0,1, 2iq   , 1,3i  . The 

condition    1,2 3,2 0 mod 3q q   is met for the following coefficient combinations: ,2iq , 

1,3i  : 1,2 3,20, 1q q  , or 1,2 3,20, 2q q  , or 1,2 3,21, 0q q  , or 1,2 3,21, 1q q  , or 

1,2 3,22, 0q q  , or 1,2 3,22, 2q q  . The condition  2,2 0 mod 3q   is met only for 

2,2 0q  . From the equivalence conditions of CPPs for 2 |N  and 3 | N , it results that the 

six sets of coefficients ,2iq , 1,3i  , lead to only two distinct permutations that can be 

considered for 1,2 3,21, 0q q   or 1,2 3,22, 0q q   and 2,2 0q  . Because for these two sets 

we have 3,2 2,2 0q q  , only 1,2q  being different, in combination with other prime 

factors we must consider two coefficients for 1,2q  and only one for 2,2q and 3,2q , 

respectively. 
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Case 2.b). If 3p   and ,3 1Nn   the coefficients 
,3,2 3

nNiq  , 1,3i  . The 

condition  2,2 0 mod3q   is met for ,3 13 Nn   values. The condition  1,2 0 mod3q   is met 

for  ,3 ,3 13 2 3N Nn n     values. The set of values for 1,2q  is 

 ,3 ,31, 2,4,5,7,8, ,3 2,3 1N Nn n  , of which ,3 13 Nn   values are equal to 1 modulo 3 and 

also ,3 13 Nn   values are equal to 2 modulo 3. As 
,33,2 3

nN
q  , the condition 

   1,2 3,2 0 mod 3q q  , for a fixed value of 1,2q , will be fullfiled for 
,3 ,3 ,31 1 13 3 2 3N N Nn n n      coefficients 3,2q . However, as ,3 13 Nn   is multiple of 3, from the 

equivalence conditions of CPPs for 2 |N  and 3 | N , it results that of the ,3 12 3 Nn   

coefficients 3,2q  only ,3 ,31 21
2 3 2 3

3
N Nn n      lead to distinct permutations. 

Cases 3.a), 3.b), 4.b). If 3p   and , 1N pn   when 3 1,p k k     and , 1N pn   

when 3 2,p k k    , the coefficients 
,, nN pi j p

q  , 1,3i  . The condition 

 1, 0 modjq p  is met for    , , 1 1N p N pn np p p     coefficients. The condition 

 2, 0 modjq p  or  3, 0 modjq p  is met for 
,

, 1
N p

N p

n
np

p
p

  coefficients, of which one 

is zero. 
Case 4.a). If  3 | 1p  , 3p   and , 1N pn  , the coefficients ,i j pq  , 1,3i  . The 

condition  1, 0 modjq p  is met for   1p p    coefficients. The condition 

 2, 0 modjq p  or  3, 0 modjq p  is obviously met only for the value zero. When 

 3, 0 modjq p  (for   1p p    values), the condition  2
2, 1, 3,3 modj j jq q q p  has to 

be fulfilled. This congruence equation, for fixed 2, jq  and 3, jq , has only one modulo p  

solution in the variable 1, jq  [21]. Therefore, by considering all the p  possible values 

for 2, jq , a number of  1p p   coefficient combinations ,i j pq  , 1,3i  , results, that 

verifies the condition  2
2, 1, 3,3 modj j jq q q p . 

For this case, it is useful to see how many coefficient combinations result when 

the product of factors is of the type 4.a), that is 
4

1

an

j
j

N p


 , 

with *3 2,jp k k    , 41, aj n . The conditions  1, 0 modjq p ,  2, 0 modjq p  and 

 3, 0 modjq p , have to be considered for each group of 4 ,0an  prime factors of type 

4.a), with 4 ,0 41,a an n . We denote by  
4 41,2, ,

an aI n   the set of indices 

corresponding to those 4an  prime factors.  

We firstly consider the case of groups consisting of only one prime factor, 
1j

p . Thus, 

if  
1 13, 0 modj jq p , the following conditions must be meet  

1 11, 0 modj jq p  and 

 
1 12, 0 modj jq p , and if  3, 0 modj jq p , the condition  2

2, 1, 3,3 modj j j jq q q p , 
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4anj I  , 1j j  must be met. The first set of conditions is met for 
1

1jp   coefficients 

1q  and a single value for 2q  and 3q , respectively, which is zero. The second set of 

conditions is met for  
4

1

1,

1
an

j
j
j j

p



  coefficients 3q , and the congruence equation has one 

solution in the variable 1, jq , for each of the 
4

1

1,

an

j
j
j j

p



  coefficients 2q , and the  
4

1

1,

1
an

j
j
j j

p



  

coefficients 3q . Therefore, in total, for the groups consisting of one factor 
1j

p , for 

which  
1 13, 0 modj jq p , we have    

4 4

1

1 1

1, 1,

1 1
a an n

j j j
j j
j j j j

p p p
 
 

      combinations of 

coefficients iq , 1,3i  . 

In the following, we consider the case of groups consisting of two prime factors, 
1j

p  

and 
2j

p Thus, if  3, 0 modj jq p , for  1 2,j j j  the conditions  1, 0 modj jq p  and 

 2, 0 modj jq p  must be met for  1 2,j j j , and if  3, 0 modj jq p , the condition  

 2
2, 1, 3,3 modj j j jq q q p , 

4anj I  , 1j j  and 2j j  must be met. The first set of 

conditions is met for    
1 2

1 1j jp p    coefficients 1q  and a single value for 2q  and 3q , 

respectively, which is zero. The second set of conditions is met for  
4

1

2

1,
,

1
an

j
j
j j
j j

p




  

coefficients 3q , and the congruence equation has one solution in the variable 1, jq , for 

each of the 
4

1

2

1,
,

an

j
j
j j
j j

p




  coefficients 2q  and the  
4

1

2

1,
,

1
an

j
j
j j
j j

p




  coefficients 3q . Thus, in total, 

for the groups consisting of two factors, 
1j

p  and 
2j

p , for which  3, 0 modj jq p , 

 1 2,j j j , we have      
4 4

1 2

1 1

2 2

1, 1,
, ,

1 1 1
a an n

j j j j
j j
j j j j
j j j j

p p p p
 
 
 

        combinations of coefficients 

iq , 1,3i  . 

Let the set 
4 ,0 4a an nI I , with 4 ,0 41 a an n   (the notation 0 derives from the fact 

that   3, 0 modj jq p , for 
4 ,0anj I ). Then, if there are groups of 4 ,0an  prime factors of 

type 4.a), it means that the following conditions have to be met:  1, 0 modj jq p , 

 2, 0 modj jq p , if  3, 0 modj jq p , 
4 ,0anj I  , and  2

2, 1, 3,3 modj j j jq q q p , if 

 3, 0 modj jq p , 
4 4 ,0a an nj I I   . 
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The first set of conditions is met for  
4 ,0

1
n a

j
j I

p


  coefficients 1q  and one value for 2q  

and 3q , respectively,  which is zero. The second set of conditions is met for 

 
4 4 ,0

1
n na a

j
j I I

p
 

  coefficients 3q , and the congruence equation has one solution in the 

variable 1, jq , for each of the 
4 4 ,0n na a

j
j I I

p
 
  coefficients 2q  and the  

4 4 ,0

1
n na a

j
j I I

p
 

  

coefficients 3q . Thus, in total, for groups consisting of 4 ,0an  factors, for which 

 3, 0 modj jq p , 
4 ,0anj I , we will have    

4

4 ,0 4 4 ,0 4 4 ,0

1 1
a

n n n n na a a a a

n

j j j
j I j I I j I I

p p p
    

       

combinations of coefficients iq , 1,3i  . If 
4 ,0 4a an nI I , that is 4 ,0 4a an n , we have 

 
4

1

1
an

j
j

p


  coefficients 1q  and one coefficient 2q  and 3q , respectively (namely, the 

value zero that will be removed from the combinations with other prime factors). 
 

In the case of CPPs, there are four types of prime numbers that are considered 
in stating the conditions in Table 2, each with two distinct sets of values of power of 
the prime number. As the conditions for the cases 1.b) 3.a), 3.b) and 4.b) are the same, 
there are 23 possible cases of decomposition of the number N  in prime factors, which 
lead to combinations of different conditions on the coefficients 1 2 3, ,q q q . Some of 

these cases are for very small values of the number N , being trivial cases.  
Firstly, the cases excluding the factors of types 3.a) or 3.b) or 4.b) are shown 

(cases 4-11). However, because they are particular cases of the situations including 
these factors, the number of CPPs can be obtained using the same formulas, but 
replacing products including these factors by 1. This is the reason for which for cases 
4-11 we will refer the next cases, that is, 12-23. 

We analyse separately each case. 
Case 1) The decomposition of N  contains prime factors of type 1.a.), that is 2N  . 

Since 2N   is even, it requires that 3 2 1q N  . As 3q  can not be 0, there is 

no CPP in this case, i.e. 2, 0CPPsC  . 

Case 2) The decomposition of N  contains prime factors of type 2.a), that is N=3. 
Since 3N  , from the equivalence conditions, it requires that 3 3 1q N  . As 

3q  can not be 0, there is no CPP in this case, i.e. 3, 0CPPsC  . 

Case 3) The decomposition of N  containes prime factors of the type 1.a) and 2.a), 
that is 6N  . 

Because in this case from the equivalence conditions of CPPs it requires that 

3 1
6

N
q   , there is no CPP, i.e. 6, 0CPPsC  . 

Case 4) The decomposition of N  containes prime factors of the type 2.b), that is N  is 
a power of 3, greater than 1. 
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This is a particular case of 16), for odd N, therefore we can use equation (17) in 

which the products    ,2 1

2

1N p j

s
n

j j
j

p p
 



   and , 1

2

N p j

s
n

j
j

p



  are replaced by 1. 

Case 5) The decomposition of N  containes prime factors of the type 1.a) and 2.b). 
This is a particular case of 17), therefore we can use equation (19) in which the 

products    ,2 1

3

1N p j

s
n

j j
j

p p
 



   and , 1

3

N p j

s
n

j
j

p



  are replaced by 1. 

Case 6) The decomposition of N  containes prime factors of the type 4.a). 
This is a particular case of 18), for odd N, therefore we can use equation (23) in 

which the products    
4

,3 1

1

1
a

N p j

s n
n

j j
j

p p


 



  ,    
4

,2 1

1

1
a

N p j

s n
n

j j
j

p p


 



   and 
4

, 1

1

a
N p j

s n
n

j
j

p





  are 

replaced by 1. 
Case 7) The decomposition of N  containes prime factors of the type 1.a) and 4.a). 

This is a particular case of 19), therefore we can use equation (25), in which the 

products    
4

,3 1

2

1
a

N p j

s n
n

j j
j

p p


 



  ,    
4

,2 1

2

1
a

N p j

s n
n

j j
j

p p


 



   and 
4

, 1

2

a
N p j

s n
n

j
j

p





  are replaced by 1. 

Case 8) The decomposition of N  containes prime factors of the type 2.a) and 4.a). 
This is a particular case of 20), for odd N, therefore we can use equation (29) in 

which the products    
4

,3 1

2

1
a

N p j

s n
n

j j
j

p p


 



  ,    
4

,2 1

2

1
a

N p j

s n
n

j j
j

p p


 



   and 
4

, 1

2

a
N p j

s n
n

j
j

p





  are 

replaced by 1. 
Case 9) The decomposition of N  containes prime factors of the type 1.a) and 2.a) and 
4.a). 

This is a particular case of 21), therefore we can use equation (31) in which the 

products    
4

,3 1

3

1
a

N p j

s n
n

j j
j

p p


 



  ,    
4

,2 1

3

1
a

N p j

s n
n

j j
j

p p


 



   and 
4

, 1

3

a
N p j

s n
n

j
j

p





  are replaced by 1. 

Case 10) The decomposition of N  containes prime factors of the type 2.b) and 4.a). 
This is a particular case of 22) for odd N , therefore we can use equation (35) in 

which the products    
4

,3 1

2

1
a

N p j

s n
n

j j
j

p p


 



  ,    
4

,2 1

2

1
a

N p j

s n
n

j j
j

p p


 



   and 
4

, 1

2

a
N p j

s n
n

j
j

p





  are 

replaced by 1. 
Case 11) The decomposition of N  containes prime factors of the type 1.a) and 2.b) 
and 4.a). 

This is a particular case of  23), therefore we can use equation (37) in which the 

products    
4

,3 1

3

1
a

N p j

s n
n

j j
j

p p


 



  ,    
4

,2 1

3

1
a

N p j

s n
n

j j
j

p p


 



   and 
4

, 1

3

a
N p j

s n
n

j
j

p





  are replaced by 1. 

Case 12) The decomposition of N  containes prime factors of the type 1.b) or 3.a) or 
3. b) or 4.b). 

In this case, depending whether the factor of type 1.b) is present, there are two 
situations.  
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When there is no factor of type 1.b), N is odd, 2 | N  and 3|N , and we can write 

,

1

N p j

s
n

j
j

N p


 , 3jp  , , 1
jN pn   when 3 1,jp k k     and , 1

jN pn   when 

3 2,jp k k    , 1,j s . Then, from the cases 3.a), 3.b) and 4.b) above, the number 

of possible combinations for the 1q  is equal to  , 1

1

1N p j

s
n

j j
j

p p




   and the total number 

of coefficients 2q  and 3q , respectively, are equal to , 1

1

N p j

s
n

j
j

p



 . The value 3 0q   

results only when 3, 0, 1,jq j s   , that is, for a single combination of coefficients 

3, , 1,jq j s , that has to be removed. The number of CPPs will be equal to: 

 , ,1 1

,
1 1

1 1N p N pj j

s s
n n

N CPPs j j j
j j

C p p p
 

 

 
     

 
      (11) 

From (11), we see that the number of CPPs is equal to 0 if the interleaver 
length is a product of prime numbers greater than 3, of the form 3 1,k k   , each of 
them to power 1. 

When there is a factor of the type 1.b), N  is even, 2 | N  and 3|N  and we can 

write ,,2

2

2 N p jN

s
nn
j

j

N p


  , with ,2 1Nn  , 3jp  , , 1
jN pn   when 3 1,jp k k     and 

, 1
jN pn   when 3 2,jp k k    , 2,j s . Then, from the cases 1.b), 3.a), 3.b) and 4.b) 

above, the number of possible combinations for the coeffcient 1q  is equal to 

   ,,2
11

2

2 1N p jN

s
nn
j j

j

N p p




      and the total number of coefficients 2q  and 3q , 

respectively, is equal to ,,2
11

2

2 N p jN

s
nn
j

j

p




 . Because this case requires from the 

equivalence conditions that 2 2q N  and 3 2q N , a number of 

, ,,2 ,2
1 11 2

2 2

1
2 2

2
N p N pj jN N

s s
n nn n
j j

j j

p p
  

 

      possible coefficients 2q  and 3q , respectively, 

remains, from which one is zero. By removing the value 3 0q  , the number of CPPs 

will be equal to: 

 

   

, , ,,2 ,2 ,2

, ,,2 ,2

1 1 11 2 2
,

2 2 2

2 1 12 3 2

2 2

2 1 2 2 1

2 1 2 1

N p N p N pj j jN N N

N p N pj jN N

s s s
n n nn n n

N CPPs j j j j
j j j

s sn nn n
j j j

j j

C p p p p

p p p

    

  

    

 

     
              
     

 
       

 

  

 
 (12) 

From (12), we see that the number of CPPs is equal to 0 if the interleaver 
length is 4 times a product of prime numbers greater than 3, of the form 3 1,k k   , 
each of them to power 1. 
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Case 13) The decomposition of N  containes prime factors of the type 1.a) and 3.a) or 
3. b) or 4.b). 

In this case, 2 | N  and 3|N  and we can write ,

2

2 N p j

s
n

j
j

N p


  , with 3jp  , 

, 1
jN pn   when 3 1,jp k k     and , 1

jN pn   when 3 2,jp k k    , 2,j s . From 

the analysis for the cases 1.a) and 3.a), 3.b), 4.b), the number of possible combinations 

for the coefficient 1q  is equal to    , 1

2

1 2 1N p j

s
n

j j
j

N p p




     and the total number of 

coefficients 2q  and 3q , respectively, is equal to , 1

2

1
2

N p j

s
n

j
jN

N
p

t





 
  , from which one 

value is 0. By removing the value 3 0q   the number of CPPs will be equal to: 

 

   

, , ,

, ,

1 1 1

,
2 2 2

2 1 1

2 2

1 1

1 1

N p N p N pj j j

N p N pj j

s s s
n n n

N CPPs j j j j
j j j

s sn n

j j j
j j

C p p p p

p p p

  

  

  

 

     
           
     
   

       
   

  

 
  (13) 

From (13), we see that the number of CPPs is equal to 0 if the interleaver 
length is 2 times a product of prime numbers greater than 3, of the form 3 1,k k   , 
each of them to power 1. 
Caz 14) The decomposition of N  containes prime factors of the type 2.a) and 1.b) or 
3.a) or 3.b) or 4.b). 

When there is no factor of type 1.b), N  is odd, 2 | N  and 3 | N  and we can write 

,

2

3 N p j

s
n

j
j

N p


  , with 3jp  , , 1
jN pn   when 3 1,jp k k     and , 1

jN pn   when 

3 2,jp k k    , 2,j s . In determining the number of coefficients, we consider 

that for the two sets of coefficients valid for the factor of type 2.a), we have only a 
single value for 2q  and 3q . The number of possible combinations for the coefficient 1q  

is equal to  , 1

2

2 1N p j

s
n

j j
j

p p




   , the number of coefficients 2q  is equal to , 1

2

N p j

s
n

j
j

p



  

and the number of coefficients 3q  is equal to , 1

2

N p j

s
n

j
j

p



 , from which one is 0. By 

removing the value 3 0q  , the number of CPPs will be equal to: 

 

   

, , ,

, ,

1 1 1

,
2 2 2

2 1 1

2 2

2 1 1

2 1 1

N p N p N pj j j

N p N pj j

s s s
n n n

N CPPs j j j j
j j j

s sn n

j j j
j j

C p p p p

p p p

  

  

  

 

     
            
     
   

        
   

  

 
  (14) 

From (14), we see that the number of CPPs is equal to 0 if the interleaver 
length is 3 times a product of prime numbers greater than 3, of the form 3 1,k k   , 
each of them to power 1. 
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When there is a factor of type 1.b), N  is even, 6 | N  and we can write 

,,2

3

2 3 N p jN

s
nn
j

j

N p


   , with ,2 1Nn  , 3jp  , , 1
jN pn   when 3 1,jp k k     and 

, 1
jN pn   when 3 2,jp k k    , 3,j s . In determining the number of coefficients, 

we consider that for the two sets of coefficients valid for the factor of type 2.a) we 
always have 2,1 3,1 0q q  . From the two sets we have to keep only one for the 

coefficients 2q  and 3q . The number of possible combinations for the coefficient 1q  is 

equal to    , ,,2 ,2
1 11

3 3

2 2 1 2 1N p N pj jN N

s s
n nn n
j j j j

j j

p p p p
 

 

         , the number of 

coefficients 2q  and 3q  is equal to ,,2
12

3

2 N p jN

s
nn
j

j

p




  , from which one is 0. By removing 

the value 3 0q   the number of CPPs will be equal to: 

 

   

, , ,,2 ,2 ,2

, ,,2 ,2

1 1 12 2
,

3 3 3

2 1 12 2 2

3 3

2 1 2 2 1

2 1 2 1

N p N p N pj j jN N N

N p N pj jN N

s s s
n n nn n n

N CPPs j j j j
j j j

s sn nn n
j j j

j j

C p p p p

p p p

   

  

    

 

     
              
     
   

         
   

  

 
 (15) 

From (15), we see that the number of CPPs is equal to 0 if the interleaver 
length is 12 times a product of prime numbers greater than 3, of the form 
3 1,k k   , each of them to power 1. 
Case 15) The decomposition of N  containes prime factors of the type 1.a) and 2.a) 
and 3.a) or 3.b) or 4.b). 

In this case 6 | N  and we can write ,

3

2 3 N p j

s
n

j
j

N p


   , with 3jp  , , 1
jN pn   

when 3 1,jp k k     and , 1
jN pn   when 3 2,jp k k    , 3,j s . The number of 

possible conmbinations for the coefficient 1q  results equal to 

   , ,1 1

3 3

1 2 1 2 1N p N pj j

s s
n n

j j j j
j j

p p p p
 

 

         , the number of coefficients 2q  and 3q  is 

equal to , ,1 1

3 3

1 1 N p N pj j

s s
n n

j j
j j

p p
 

 

    , from which one is 0. After removing the value 

3 0q   the number of CPPs will be equal to: 

 

   

, , ,

, ,

1 1 1

,
3 3 3

2 1 1

3 3

2 1 1

2 1 1

N p N p N pj j j

N p N pj j

s s s
n n n

N CPPs j j j j
j j j

s sn n

j j j
j j

C p p p p

p p p

  

  

  

 

     
            
     
   

        
   

  

 
   (16) 

From (16), we see that the number of CPPs is equal to 0 if the interleaver 
length is 6 times a product of prime numbers greater than 3, of the form 3 1,k k   , 
each of them to power 1. 
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Case 16) The decomposition of N  containes prime factors of the type 2.b) and 1.b) or 
3.a) or 3.b) or 4.b). 

When there is no factor of the type 1.b), N  is odd, 2 | N  and 3 | N  and we can 

write ,,3

2

3 N p jN

s
nn
j

j

N p


  , with ,3 1Nn  , 3jp  , , 1
jN pn   when 3 1,jp k k     and 

, 1
jN pn   when 3 2,jp k k    , 2,j s . It follows that the number of possible 

combinations for the coefficient 1q  is equal to  ,,3
11

2

2 3 1N p jN

s
nn
j j

j

p p




    , the number 

of coefficients 2q  is equal to ,,3
11

2

3 N p jN

s
nn
j

j

p




  and the number of coefficients 3q  is 

equal to ,,3
12

2

2 3 N p jN

s
nn
j

j

p




  , for  ,,3
11

2

3 1N p jN

s
nn
j j

j

p p




    of the 

 ,,3
11

2

2 3 1N p jN

s
nn
j j

j

p p




     values for the coefficients 1q  and it is equal to 

,,3
12

2

2 3 N p jN

s
nn
j

j

p




  , for the other  ,,3
11

2

3 1N p jN

s
nn
j j

j

p p




    values for the coefficients 

1q , from which one is 0. By removing the value 3 0q   the number of CPPs will be 

equal to: 

 

 

, , ,,3 ,3 ,3

, , ,,3 ,3 ,3

1 1 11 1 2
,

2 2 2

1 1 11 1 2

2 2 2

3 1 3 2 3 1

3 1 3 2 3 1

N p N p N pj j jN N N

N p N p N pj j jN N N

s s s
n n nn n n

N CPPs j j j j
j j j

s s s
n n nn n n
j j j j

j j j

C p p p p

p p p p

    

  

    

  

     
               
     

     
              
     

  

  

     , ,,3 ,3
2 1 12 1 2

2 2

2 3 1 2 3 1N p N pjN jN

s s
n nn n

j j j
j j

p p p
    

 



   
           
   

 

 (17) 

From (17), we see that in this case the number of CPPs is always greater than 0. 
When there is a factor of the type 1.b), N  is even, 6 | N  and we can write  

,,2 ,3

3

2 3 N p jN N

s
nn n
j

j

N p


   , with ,2 1Nn  , ,3 1Nn  , 3jp  , , 1
jN pn   when 3 1,jp k k     

and , 1
jN pn   when 3 2,jp k k    , 3,j s . It follows that the numbers of possible 

combinations for the coefficient 1q  is equal to  ,,2 ,3
11 1

3

2 2 3 1N p jN N

s
nn n
j j

j

p p
 



     , the 

number of coefficients 2q  is equal to ,,2 ,3
12 1

3

2 3 N p jN N

s
nn n
j

j

p
 



   and the number of 

coefficients 3q  is equal to ,,2 ,3
12 2

2

2 2 3 N p jN N

s
nn n
j

j

p
 



   , for 

 ,,2 ,3
11 1

3

2 3 1N p jN N

s
nn n
j j

j

p p
 



     of the  ,,2 ,3
11 1

3

2 2 3 1N p jN N

s
nn n
j j

j

p p
 



      values for the 
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coefficient 1q  and equal to ,,2 ,3
12 2

2

2 2 3 N p jN N

s
nn n
j

j

p
 



   , for the other 

 ,,2 ,3
11 1

3

2 3 1N p jN N

s
nn n
j j

j

p p
 



     values of the coefficient 1q , from which one is 0. By 

removing the value 3 0q   the number of CPPs will be equal to: 

 

 

, ,,2 ,3 ,2 ,3

, ,,2 ,3 ,2 ,3

,,2 ,3

1 11 1 2 1
,

3 3

1 12 2 1 1

3 3

12 1

3

2 3 1 2 3

2 2 3 1 2 3 1

2 3

N p N pj jN N N N

N p N pj jN N N N

N p jN N

s s
n nn n n n

N CPPs j j j
j j

s s
n nn n n n
j j j

j j

nn n
j

j

C p p p

p p p

p

    

 

    

 

 



   
           
   

   
             
   

  

 

 

       

,,2 ,3

, ,,2 ,3 ,2 ,3

12 2

3

2 1 12 1 2 1 1 2

3 3

2 2 3 1

2 3 1 2 3 1

N p jN N

N p N pjN N jN N

s s
nn n
j

j

s s
n nn n n n

j j j
j j

p

p p p

 



       

 

   
        

   
   

           
   

 

 

 (18) 

From (18), we see that in this case the number of CPPs is always greater than 0. 
Case 17) The decomposition of N  containes prime factors of the type 1.a) and 2.b) 
and 3.a) or 3.b) or 4.b). 

In this case 6 | N  and we can write ,,3

3

2 3 N p jN

s
nn
j

j

N p


   , ,3 1Nn  , 3jp  , 

, 1
jN pn   when 3 1,jp k k     and , 1

jN pn   when 3 2,jp k k    , 3,j s . From 

the analysis of the cases 1.a), 2.b) and 3.a), 3.b), 4.b), it follows that the number of 

possible combinations for the coefficient 1q  is equal to  ,,3
11

3

1 2 3 1N p jN

s
nn
j j

j

p p




     , 

the number of coefficients 2q  is equal to ,,3
11

3

1 3 N p jN

s
nn
j

j

p




   and a number of 

coefficients 3q  is equal to ,,3
12

2

1 2 3 N p jN

s
nn
j

j

p




   , for  ,,3
11

3

1 3 1N p jN

s
nn
j j

j

p p




     of the 

 ,,3
11

3

1 2 3 1N p jN

s
nn
j j

j

p p




      values for the coefficient 1q  and equal to 

,,3
12

2

1 2 3 N p jN

s
nn
j

j

p




   , for the other  ,,3
11

3

1 3 1N p jN

s
nn
j j

j

p p




     values for the 

coefficient 1q , from which one is 0. By removing the value 3 0q   the number of CPPs 

results equal to: 

 , ,,3 ,3
1 11 1

,
3 3

1 3 1 1 3N p N pj jN N

s s
n nn n

N CPPs j j j
j j

C p p p
  

 

   
           
   

   

 , ,,3 ,3
1 12 1

3 3

1 2 3 1 1 3 1N p N pj jN N

s s
n nn n
j j j

j j

p p p
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, ,,3 ,3
1 11 2

3 3

1 3 1 2 3 1N p N pj jN N

s s
n nn n
j j

j j

p p
  

 

   
           
   

   

     , ,,3 ,3
2 1 12 1 2

3 3

2 3 1 2 3 1N p N pjN jN

s s
n nn n

j j j
j j

p p p
    

 

   
           
   

    (19) 

From (19), we see that in this case the number of CPPs is always greater than 0. 
Case 18) The decomposition of N  containes prime factors of the type 1.b) or 3.a) or 
3.b) or 4.b) and 4.a). 

In this case, as we have to address separately the factors of type 4.a), it is useful 
to denote the number of such factors by 4an . 

When there is no factor of the type 1.b), N  is odd, 2 |N  and 3|N  and we can 

write 
4

,

41 1

a
N p j

a

s n s
n

j j
j j s n

N p p


   

   , 3jp  , , 1
jN pn   when 3 1,jp k k     and , 1

jN pn   

when 3 2,jp k k    , 41, aj s n  , and *3 2,jp k k    , 4 1,aj s n s   . We 

consider the analysis of the case 4.a), and denote by  
4 4 41, 2, ,

an a aI s n s n s       

the set of indices corresponding to the 4an  prime factors of type 4.a) and by 

4 ,0 4a an nI I , with 4 ,0 41 a an n  , the set of indices for which  3, 0 modj jq p , 
4 ,0anj I . It 

follows that for a group of 4 ,0an  prime factors of type 4.a) the number of possible 

combinations for the coefficient 1q  is equal to    
4

,

4 ,0

1

1

1 1
a

N p j

n a

s n
n

j j j
j I j

p p p




 

     , the 

number of coefficients 2q  is equal to 
4

,

4 4 ,0

1

1

a
N p j

n na a

s n
n

j j
j I I j

p p




  

   and the number of 

coefficients 3q  is equal to  
4

,

4 4 ,0

1

1

1
a

N p j

n na a

s n
n

j j
j I I j

p p




  

   . In total, for a group of 4 ,0an  

prime factors of the type 4.a), the number of CPPs will be equal to: 

   

 

4
,

4 ,0

4 ,0

4 4
, ,

4 4 ,0 4 4 ,0

1

, ,
1

1 1

1 1

1 1

1

a
N p j

a

n a

a a
N p N pj j

n n n na a a a

s n
n

N CPPs n j j j
j I j

s n s n
n n

j j j j
j I I j j I I j

C p p p

p p p p




 

 
 

     

 
      
 
 

   
       
   
   

 

   
   (20) 

For a group of 4an  prime factors of the type 4.a), we have to remove the case when 

3 0q   and the number of CPPs will be: 

   
4 4 4

, , ,

4

4

1 1 1

, ,
1 1 1 1

1 1 1
a a a

N p N p N pj j j

a

a

s n s n s ns
n n n

N CPPs n j j j j j
j s n j j j

C p p p p p
  

  

     

     
            

    
      (21) 

When the condition  3, 0 modj jq p  is not met for any of the 4an  prime factors of the 

type 4.a), according to the condition 4.a) above, the number of CPPs will be: 
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4 4
, ,

4

4 4
,,

4 4

1 1

, ,0
1 1 1

3 11

1 1 1 1

1

1 1 1

a a
N p N pj j

a

a a
N pN p jj

a a

s n s ns
n n

N CPPs j j j j
j j s n j

s n s ns s
nn

j j j j j j
j s n j j s n j

C p p p p

p p p p p p

 
 

    

 
 

       

  
       
   

              
  

  

   
 (22) 

The final number of CPPs results by summing the quantities from (20)-(22) for 

4 ,0 40,1,2, ,a an n  , 

      

   

 

4
,

4

4 4
,

4 ,0 4 ,0

4
, ,

4 4 ,0 4 4 ,0

3 1

,
1 1

1
1

1 1

1 1

1 1

1 1

1 1

1

a
N p j

a

a a
N p j

a n a

a
N p N pj j

n n n na a a a

s ns
n

N CPPs j j j j
j s n j

n s n
n

j j j
n j I j

s n s
n n

j j j j
j I I j j I I j

C p p p p

p p p

p p p p


 

   

 


  


 

     

        
 

 
      
  

 
     
 
 

 

  

  

   

4

4 4 4
, , ,

4

1 1 1

1 1 1 1

1 1 1

a

a a a
N p N p N pj j j

a

n

s n s n s ns
n n n

j j j j j
j s n j j j

p p p p p



  
  

     

 
  

  
     

             
    



   

 

      

     

     

4
,

4

4 4
,

4 ,0 4 4 4 ,0

4 4
, ,

4

3 1

1 1

1
3 1

1 1

2 1 1

1 1 1

1 1

1 1

1 1 1

a
N p j

a

a a
N p j

a n n na a a

a a
N p N pj j

a

s ns
n

j j j j
j s n j

n s n
n

j j j j
n j I j I I j

s n s ns
n n

j j j j
j s n j j

p p p p

p p p p

p p p p


 

   

 
 

    

 
  

    

        
 

 
       

 
 

  
       

 

 

   

  


 


     (23) 

From (23), we see that in this case the number of CPPs is always greater than 0. 
When there is a factor of the type 1.b), N  is even, 2 | N  and 3|N  and we can 

write 
4

,,2

42 1

2
a

N p jN

a

s n s
nn
j j

j j s n

N p p


   

    , with ,2 1Nn  , 3jp  , , 1
jN pn   when 

3 1,jp k k     and , 1
jN pn   when 3 2,jp k k    , 42, aj s n  , and 

*3 2,jp k k    , 4 1,aj s n s   . We consider the case when N is odd and the 

additional case 1.b), and use the same notations as above. The number of CPPs will be 
equal to: 

 
4 4

, ,,2 ,2

4

1 11 2
,

2 1 2

2 1 2
a a

N p N pj jN N

a

s n s ns
n nn n

N CPPs j j j j
j j s n j

C p p p p
 

  

    

  
         
   

    

 
4

,,2

4

12

1 2

1 2
a

N p jN

a

s ns
nn

j j
j s n j

p p




   

 
     
 
   

   
44

,,2

4 ,0 4 ,0

1
11

1 2

1 2 1
aa

N p jN

a n a

s nn
nn

j j j
n j I j

p p p
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4 4

, ,,2 ,2

4 4 ,0 4 4 ,0

1 12 2

2 2

2 1 2
a a

N p N pj jN N

n n n na a a a

s n s n
n nn n

j j j j
j I I j j I I j

p p p p
 

  

     

   
          

      
     

   
4

,,2

4

4 4
, ,,2 ,2

11

1 1

1 12 2

2 2

1 2 1

2 2 1

a
N p jN

a

a a
N p N pj jN N

s ns
nn

j j j
j s n j

s n s n
n nn n
j j

j j

p p p

p p




   

 
  

 

 
       
 
   
        
   

 

 
 

      

     

     

4
,,2

4

4 4
,,2

4 ,0 4 ,0 4 4 ,0

,,2

4

3 13 5

1 2

1
3 13 5

1 2

2 12 3

1 2

1 2 1

1 2 1

1 2 1

a
N p jN

a

a a
N p jN

a n n na a a

N p jN

a

s ns
nn

j j j j
j s n j

n s n
nn

j j j j
n j I j I I j

s ns
nn

j j j
j s n j

p p p p

p p p p

p p p


  

   

 
  

    


  

   

         
 

 
        

 
 

     

 

   


4 4

,,2
12

2

2 1
a a

N p jN

s n
nn
j

j

p






   
     
  

 

 (24) 

From (24), we see that in this case the number of CPPs is always greater than 0. 
Case 19) The decomposition of N  containes prime factors of the type 1.a) and 3.a) or 
3.b) or 4.b) and 4.a). 

In this case 2 | N  and 3|N  and we can write 
4

,

42 1

2
a

N p j

a

s n s
n

j j
j j s n

N p p


   

    , with 

3jp  , , 1
jN pn   when 3 1,jp k k     and , 1

jN pn   when 3 2,jp k k    , 

42, aj s n  , and *3 2,jp k k    , 4 1,aj s n s   . The number of CPPs results by 

considering the previous case and the case 1.a), with the same notations used above: 

 
4 4

, ,

4

1 1

,
2 1 2

1 1 1
a a

N p N pj j

a

s n s ns
n n

N CPPs j j j j
j j s n j

C p p p p
 

 

    

  
         
   
    

     
4 44

, ,

4 ,04 4 ,0

1
1 1

11 2 2

1 1 1 1 1
a aa

N p N pj j

aa n a

s n s nns
n n

j j j j j
nj s n j j I j

p p p p p
 

 

     

  
                  

     

 
4 4

, ,

4 4 ,0 4 4 ,0

1 1

2 2

1 1 1
a a

N p N pj j

n n n na a a a

s n s n
n n

j j j j
j I I j j I I j

p p p p
 

 

     

   
          

      
     

   
4 4 4

, , ,

4

1 1 1

1 1 2 2

1 1 1 1 1 1
a a a

N p N p N pj j j

a

s n s n s ns
n n n

j j j j j
j s n j j j

p p p p p
  

  

     

     
                      

     

      
4

,

4

3 1

1 2

1 1
a

N p j

a

s ns n

j j j j
j s n j

p p p p


 

   

        
 

   

     
44

,

4 ,0 4 4 4 ,0

1
3 1

1 2

1 1
aa

N p j

a n n na a a

s nn
n

j j j j
n j I j I I j

p p p p


 

    

 
       
 
 

     

     
4 4

, ,

4

2 1 1

1 2 2

1 1 1
a a

N p N pj j

a

s n s ns n n

j j j j
j s n j j

p p p p
 

  

    

   
             

     (25) 
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From (25) we see that in this case the number of CPPs is always greater than 0. 
Case 20) The decomposition of N  contains prime factors of the type 2.a) and 1.b) or 
3.a) or 3.b) or 4.b) and 4.a). 

When there is no factor of the type 1.b), N  is odd, 2 |N  and 3 | N  and we can 

write 
4

,

42 1

3
a

N p j

a

s n s
n

j j
j j s n

N p p


   

    , 3jp  , , 1
jN pn   when 3 1,jp k k     and , 1

jN pn   

when 3 2,jp k k    , 42, aj s n  , and *3 2,jp k k    , 4 1,aj s n s   . We 

consider the analysis from the case 18 and the conditions from the case 2.a). For a 
group of 4 ,0an  prime factors of the type 4.a), the number of CPPs is equal to: 

   

 

4
,

4 ,0

4 ,0

4 4
, ,

4 4 ,0 4 4 ,0

1

, ,
2

1 1

2 2

1 2 1

1

a
N p j

a

n a

a a
N p N pj j

n n n na a a a

s n
n

N CPPs n j j j
j I j

s n s n
n n

j j j j
j I I j j I I j

C p p p

p p p p




 

 
 

     

 
       
 
 

   
       
   
   

 

   
   (26) 

For group of 4an  prime factors of the type 4.a), we have to remove the case when 

3 0q   and the number of CPPs will be equal to: 

   
4 4 4

, , ,

4

4

1 1 1

, ,
1 2 2 2

1 2 1 1
a a a

N p N p N pj j j

a

a

s n s n s ns
n n n

N CPPs n j j j j j
j s n j j j

C p p p p p
  

  

     

     
             

    
      (27) 

When the condition  3, 0 modj jq p  is not met for any of the 4an  prime factors of the 

type 4.a), the number of CPPs will be: 

 
4 4

, ,

4

1 1

, ,0
2 1 2

2 1
a a

N p N pj j

a

s n s ns
n n

N CPPs j j j j
j j s n j

C p p p p
 

 

    

  
        
   
    

 
4

,

4

1

1 2

1
a

N p j

a

s ns
n

j j
j s n j

p p




   

 
   
 
       (28) 

The number of CPPs results by summing the quantities in (27)-(28) for 

4 ,0 40,1,2, ,a an n  : 

      
4

,

4

3 1

,
1 2

1 2 1
a

N p j

a

s ns
n

N CPPs j j j j
j s n j

C p p p p


 

   

         
 

   

   
44

,

4 ,0 4 ,0

1
1

1 2

1 2 1
aa

N p j

a n a

s nn
n

j j j
n j I j

p p p




  

 
       
  

    

 
4 4

, ,

4 4 ,0 4 4 ,0

1 1

2 2

1
a a

N p N pj j

n n n na a a a

s n s n
n n

j j j j
j I I j j I I j

p p p p
 

 

     

   
        

      
     

   
4 4 4

, , ,

4

1 1 1

1 2 2 2

1 2 1 1
a a a

N p N p N pj j j

a

s n s n s ns
n n n

j j j j j
j s n j j j

p p p p p
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4
,

4

4 4
,

4 ,0 4 4 4 ,0

4 4
, ,

4

3 1

1 2

1
3 1

1 2

2 1 1

1 2 2

1 2 1

1 2 1

1 2 1

a
N p j

a

a a
N p j

a n n na a a

a
N p N pj j

a

s ns
n

j j j j
j s n j

n s n
n

j j j j
n j I j I I j

s n s ns
n n

j j j j
j s n j j

p p p p

p p p p

p p p p


 

   

 
 

    

 
  

    

         
 

 
        

 
 

 
       
 

 

   

  1
a 

 
 


     (29) 

From (29) we see that in this case the number of CPPs is always greater than 0. 
When there is a factor of the type 1.b), N  is even, 6 | N  and we can write 

4
,,2

43 1

2 3
a

N p jN

a

s n s
nn
j j

j j s n

N p p


   

     , with ,2 1Nn  , 3jp  , , 1
jN pn   when 3 1,jp k k     

and , 1
jN pn   when 3 2,jp k k    , 43, aj s n  , and 

*3 2,jp k k    , 4 1,aj s n s   . We consider the subcase when N is odd and the 

additional case 1.b). The number of CPPs results equal to: 

 
4 4

, ,,2 ,2

4

1 11 2
,

3 1 3

2 2 1 2
a a

N p N pj jN N

a

s n s ns
n nn n

N CPPs j j j j
j j s n j

C p p p p
 

  

    

  
          
   

    

 
4

,,2

4

12

1 3

1 2
a

N p jN

a

s ns
nn

j j
j s n j

p p




   

 
     
 
   

   
44

,,2

4 ,0 4 ,0

1
11

1 3

1 2 2 1
aa

N p jN

a n a

s nn
nn

j j j
n j I j

p p p




  

 
        
  

    

 
4 4

, ,,2 ,2

4 4 ,0 4 4 ,0

1 12 2

3 3

2 1 2
a a

N p N pj jN N

n n n na a a a

s n s n
n nn n

j j j j
j I I j j I I j

p p p p
 

  

     

   
          

      
     

   
4

,,2

4

11

1 1

1 2 2 1
a

N p jN

a

s ns
nn

j j j
j s n j

p p p




   

 
        
 
   

4 4
, ,,2 ,2

1 12 2

3 3

2 2 1
a a

N p N pj jN N

s n s n
n nn n
j j

j j

p p
 

  

 

   
        
   

   

      
4

,,2

4

3 13 4

1 3

1 2 1
a

N p jN

a

s ns nn
j j j j

j s n j

p p p p


  

   

         
 

   

     
44

,,2

4 ,0 4 4 4 ,0

1
3 13 4

1 3

1 2 1
aa

N p jN

a n n na a a

s nn
nn

j j j j
n j I j I I j

p p p p
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    (30) 

From (30) we see that in this case the number of CPPs is always greater than 0. 
Case 21) The decomposition of N  contains prime factors of the type 1.a) and 2.a) and 
3.a) or 3.b) or 4.b) and 4.a). 
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In this case 6 | N  and we can write 
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, 1
jN pn   when 3 1,jp k k     and , 1

jN pn   when 3 2,jp k k    , 43, aj s n  , 

and *3 2,jp k k    , 4 1,aj s n s   . In determining the number of CPPs, we 

consider the case 20) for N odd and that for the case 1.a), there is a single set of valid 
coefficients. The number of CPPs will be: 
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From (31) we see that in this case the number of CPPs is always greater than 0. 
Case 22) The decomposition of N  contains prime factors of the type 2.b) and 1.b) or 
3.a) or 3.b) or 4.b) and 4.a). 

When the is no factor of the type 1.b), N  is odd, 2 |N  and we can write 
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    , ,3 1Nn  , 3jp  , , 1
jN pn   when 3 1,jp k k     and 

, 1
jN pn   when 3 2,jp k k    , 42, aj s n  , and *3 2,jp k k    , 4 1,aj s n s   .  

We consider the analysis from the case 18 and the conditions from the case 2.b). For a 
group of 4 ,0an  prime factors of the type 4.a), the number of CPPs is equal to: 
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For a group of 4an  prime factors of the type 4.a), we have to remove the case when 

3 0q   and the number of CPPs will be equal to: 
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    (33) 

When the condition  3, 0 modj jq p  is not met for any of the 4an  prime factors of the 

type 4.a), the number of CPPs will be:  
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The number of CPPs results by summing the quantities in (32)-(34) for 

4 ,0 40,1,2, ,a an n  : 
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From (35) we see that 0 in this case the number of CPPs is always greater than. 
When there is a factor of the type 1.b), N  is even, 6 | N  and we can write 

4
,,2 ,3

43 1

2 3
a

N p jN N

a

s n s
nn n
j j

j j s n

N p p


   

     , with ,2 1Nn  , ,3 1Nn  , 3jp  , , 1
jN pn   when 



27 

 

3 1,jp k k     and , 1
jN pn   when 3 2,jp k k    , 43, aj s n  , and 

*3 2,jp k k    , 4 1,aj s n s   . 

We consider the subcase when N is odd and the additional case 1.b). The number of 
CPPs results equal to: 
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From (36) we see that in this case the number of CPPs is always greater than 0. 
Case 23) The decomposition of N  contains prime factors of the type 1.a) and 2.b) and 
3.a) or 3.b) or 4.b) and 4.a). 

In this case N  is even, 6 | N  and we can write 
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with ,3 1Nn  , 3jp  , , 1
jN pn   when 3 1,jp k k     and , 1

jN pn   when 

3 2,jp k k    , 43, aj s n  , and *3 2,jp k k    , 4 1,aj s n s   . In 

determining the number of CPPs we consider the case 22) for odd N and that for the 
case 1.a), there is a single set of valid coefficients. The number of CPPs will be: 
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From (37) we see that in this case the number of CPPs is always greater than 0. 
We bring together the conclusions from all previous cases and conclude that 

the number of CPPs is equal to 0 if the interleaver length is of the form: 
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2 3N N
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n n

j
j

N p


   , with ,2 0,2Nn  , ,3 0,1Nn  , 3jp  , with 3 1,jp k k    , 

3,j s       (38) 
Such lengths have to be avoided in designing CPP based interleavers. 
By comparing equations (10) and (38), it can be concluded that for any 

interleaver length for which the number of CPPs is 0, the number of QPPs is also 0. 
But there are lengths for which the number of QPPs is 0, but the number of CPPs is 
greater than 0. Such lengths are generated by multiplying by one, two or four products 
of prime numbers greater than 2, each to the power 1. In each product, there should be 
at least a prime number of the form *3 2,k k   , so that: 
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     , with ,2 0,2Nn  , ,3 0,1Nn  , 3jp  , with 

3 1,jp k k    , if 43, aj s n   and *3 2,jp k k    , if 4 1,aj s n s   , 4 1as n   

(39) 
For the lengths of the type in (39) the CPP based interleavers can be used 

instead of QPP based ones. The number of lengths for which the number of QPPs is 0 
is significantly greater than the number of lengths for which the number of CPPs is 
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greater than 0. For example, from 2 to 10,000 there are 7098 lengths for which the 
number of QPPs is 0 and only 2264 lengths for which the number of CPPs is 0. 
 

6. Conclusions 
This paper presents a method for determining the number of true different modulo 

N PPs using the Chinese remainder theorem, when the conditions for the coeficients of 
PPs are known, such as for QPPs or CPPs. The method was applied to determine the 
number of true different QPPs or CPPs. This number is useful when QPPs or CPPs are 
used for turbo code interleavers and we choose a certain length of interleaver N. If the 
number of true different QPPs or CPPs is large, we could have a large number of good 
interleavers with the desired length. If this number is small, the possibility to find 
good interleavers for turbo codes is low and if this number is 0, obviously, there is no 
interleaver with that length. 
 
 
Referrences 
 
[1] Takeshita, O.Y. (2007). Permutation polynomial interleavers: an algebraic-geometric 
perspective. IEEE Transactions Information Theory 53(6), 2116-2132. 
[2] Sun, J., & Takeshita, O.Y. (2005). Interleavers for turbo codes using permutation 
polynomial over integer rings. IEEE Transactions Information Theory 51(1), 101-119. 
[3] Takeshita, O.Y. (2006). On maximum contention-free interleavers and permutation 
polynomials over integer rings. IEEE Transactions Information Theory 52(3), 1249-1253. 
[4] Ryu, J., & Takeshita, O.Y. (2006). On quadratic inverse for quadratic permutation 
polynomials over integer rings. IEEE Transactions Information Theory 52(3), 1254-1260. 
[5] Takeshita, O.Y. (2006). A new metric for permutation polynomial interleavers. Proc. of 
IEEE International Symposium of Information Theory (ISIT), Seattle, USA, pp. 1983-1987. 
[6] Rosnes, E., & Takeshita, O.Y. (2006). Optimum distance quadratic permutation 
polynomial-based interleavers for turbo codes. Proc. of IEEE International Symposium of 
Information Theory (ISIT), Seattle, USA, pp. 1988-1992. 
[7] Tărniceriu, D., Trifina, L., & Munteanu, V. (2009). About minimum distance for QPP 
interleavers. Annals of Telecommunications 64(11-12), 745-751. 
[8] Zhao, H., Fan, P., & Tarokh, V. (2010). On the equivalence of interleavers for turbo codes 
using quadratic permutation polynomials over integer rings. IEEE Communications Letters 
14(3), 236-238. 
[9] Trifina, L., Tărniceriu, D., & Munteanu, V. (2011). Improved QPP interleavers for LTE 
Standard. Proc. of IEEE International Symposium of Signals, Circuits and Systems (ISSCS), 
Iasi, Romania, pp. 403-406. 
[10] Ryu, J. (2012). Efficient address generation for permutation polynomial based 
interleavers over integer rings. IEICE Transactions on Fundamentals E95-A(1), 421-424. 
[11] Lahtonen, J., Ryu, J., & Suvitie, E. (2012). On the degree of the inverse of quadratic 
permutation polynomial interleavers. IEEE Transactions Information Theory 58(6), 3925-
3932. 
[12] Rosnes, E. (2012). On the minimum distance of turbo codes with quadratic permutation 
polynomial interleavers. IEEE Transactions Information Theory 58(7), 4781-4795. 



30 

 

[13] Trifina, L., Tărniceriu, D., & Munteanu, V. (2012). On dispersion and nonlinearity 
degree of QPP Interleavers. Applied Mathematics & Information Sciences 6(3), 397-400. 
[14] Ryu, J. (2012). Permutation polynomial of higher degrees for turbo code interleavers. 
IEICE Transactions on Communications E95-B(12), 3760-3762. 
[15] Trifina, L., & Tărniceriu, D. (2014). Improved method for searching interleavers from a 
certain set using Garello’s method with applications for the LTE Standard. Annals of 
Telecommunications 69(5-6), 251-272. 
[16] 3GPP TS 36.212 V8.3.0, 3rd Generation Partnership Project, Multiplexing and channel 
coding (Release 8), 2005. 
http://www.etsi.org/deliver/etsi_ts/136200_136299/136212/08.03.00_60/ts_136212v080300p
.pdf. Accessed 05 June 2015. 
[17] Trifina, L., & Tărniceriu, D. (2013). Analysis of cubic permutation polynomials for 
turbo codes. Wireless Personal Communications 69(1), 1-22. 
[18] Chen, Y.-L., Ryu, J., & Takeshita, O.Y. (2006). A simple coefficient test for cubic 
permutation polynomials over integer rings. IEEE Communications Letters 10(7), 549-551. 
[19] Zhao, H., & Fan, P. (2007). A Note on A simple coefficient test for cubic permutation 
polynomials over integer rings. IEEE Communications Letters 11(12), 991. 
[20] Weng, G., & Dong, C. (2008). A note on permutation polynomial over n . IEEE Trans. 

Inf. Theory 54(9), 4388-4390. 
[21] Hardy, G.H., & Wright, E.M. (1975). An Introduction to the Theory of Numbers. fourth 
edition, Oxford University Press. 


